

केन्द्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण विभाग, जल शक्ति मंत्रालय

भारत सरकार

Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES

Balaghat District Madhya Pradesh

उत्तर मध्य क्षेत्र, भोपाल North Central Region, Bhopal

Central Ground Water Board

Department of Water Resources, River Development & Ganga Rejuvenation Ministry of Jal Shakti Government of India

Aquifer Mapping and Ground Water Management Plan of Balaghat District, Madhya Pradesh

BY Sumanta Kumar Mohanta "Scientist – B"

> NORTH CENTRAL REGION BHOPAL 2021-2022

PREFACE

Aquifer mapping is as a multi-disciplinary scientific process, wherein a combination of geological, geophysical, hydrogeological and geochemical studies is applied to characterize the quantity, quality and sustainability of ground water. Systematic aquifer mapping is a procedure to improve our understanding of the hydrogeological framework of aquifer system.

Under the project on National Aquifer Mapping (NAQUIM) in XII & XIII Plan to formulate sustainable aquifer management plan, Central Ground Water Board (CGWB), North Central Region, Bhopal has taken up Balaghat district to prepare the 3-Dimensional Model and 2-Dimensional Aquifer Maps for the entire district and formulate Block-wise Aquifer Management Plan.

Balaghat district occupies an area of 9229 sq. km out of which the ground water recharge worthy area is 8918 sq. km. and the rest is covered by hilly and forest area. The major rivers flowing through the area includes the river Wein Ganga River and its tributaries Bagh, Banjar, Shisire, Sod and Tumnar. The major part of the district is covered by the by Archean granite gneisses/schist. As per the Dynamic Ground Water Resource Assessment Report (2020), the net ground water availability in the district 780 MCM and ground water draft for all uses is 161 MCM, resulting the stage of ground water development to be 21 % as a whole for district. The Balaghat district falls under safe category. After the implemented of project interventions in the report, the stage of development is expected to improve by 38 % i.e. from 21% to 59% for the Balaghat district.

Balaghat district comprises of ten blocks namely Baihar, Balaghat, Birsa, Katangi, Khairlanji, Kirnapur, Lanji, Lalburra, Paraswada and Waraseoni. Based on the available data and the earlier hydrogeological studies taken up in the district, an attempt has been made in this report to compile all relevant information, such as hydrogeological, agriculture, irrigation, land use, rain fall, chemical quality of water and other collateral data.

Before finalization of this report a three tier evaluation mechanism is adopted presentations were made at Regional level & State level Coordination Committee ,then the revised presentation were made before the Member and finally it was presented to National Level Expert Committee , after all corrections this report is prepared. Results of these comprehensive studies will contribute significantly to ground water sustainable management tools. It will not only enhance the long-term aquifer monitoring networks and but would also help in building the conceptual and quantitative regional ground-water-flow models for planners, policy makers and other stakeholders.

I would like to place on record my appreciation of the untiring efforts of **Mr Sumanta Kumar Mohanta**, Scientist-B for preparing the Aquifer maps and Management plan and compiling this informative report. I fondly hope that this report will serve as a valuable guide for sustainable development of Ground Water in the Balaghat district, Madhya Pradesh.

(Rana Chatterjee) Regional Director

Concelharty

PART-I: DISTRICT WISE TECHNICAL REPORT

CONTENTS

I. INTRODUCTION	1-26
1.1 Objective and Scope	1
1.2 Approach and methodology	2
1.3 Study area	3
1.4 Administrative Set up	4
1.5 Demography	5
1.6 Climate and Rainfall	6
1.7 Physiography	8
1.8 Drainage	9
1.9 Land Use	10
2.0 Agriculture	13
2.1 Geology	23
II. DATA COLLECTION AND GENERATION	27-31
2.1 Data Collection and Compilation	27
2.2 Ground Water Exploration	28
2.3 Ground Water monitoring wells	28
2.4 Ground Water Quality	31
III. DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING	
3.1 Hydrogeology	32
3.2 Water bearing formation	32
3.3 Hydrogeological data collection	33
3.4 Ground Water Level	33
3.5 Ground Water Quality	38
3.6 3-D and 2-D Aquifer Disposition	44
3.7 Aquifer Parameters	49
IV. GROUND WATER RESOURCES	
V. GROUND WATER RELATED ISSUES	
5.1 Low Ground Water Potential / Limited Aquifer Thickness / Sustainability	55
5.2 Inferior Ground Water Quality	55
VI. PROPOSED MANAGEMENT STRATEGY	
6.1 Ground Water development plan	56
6.2 Solution for Fluoride contamination	57
VII. CONCLUSION AND RECOMMENDATION	
VIII. ANNEXURE	92-100

List of Figures in Part-I

Fig.1.1: Approach and methodology	2
Fig.1.2: Index map, Balaghat District	
Fig.1.3: Administrative map, Balaghat District	
Fig.1.4: Rainfall Comparison, Balaghat District	
Fig 1.5: Physiography Map	
Fig 1.6: Soil Map	9
Fig.1.7: Drainage Map	10
Fig.1.8: Land use and Land cover	
Fig.1.9: Landuse Pie Chart	12
Fig.2.0: Geological Map	24
Fig.2.1: Locations of Exploratory Wells	28
Fig.3.1: Hydrogeology Map	33
Fig. 3.2: Premonsoon (May 2019) Depth to Water Level of Aquifer-I (Shallow Aquifer)	35
Fig. 3.3: Post monsoon (Nov. 2019) Depth to Water Level of Aquifer-I (Shallow Aquifer)	36
Fig. 3.4: Seasonal Fluctuation of Water Level	37
Fig. 3.6: Piper Diagram	
Fig. 3.7: U S Salinity Diagram	40
Fig. 3.8: Electrical Conductivity of Aquifer-I (Shallow Aquifer)	43
Fig. 3.9: Nitrate of Aquifer-II (Deeper Aquifer)	43
Fig.3.10:3-D disposition of Aquifer	44
Fig.3.11: Fence Diagram	45
Fig.3.12: Hydrogeological Cross Section A-A'	47
Fig.3.13: Hydrogeological Cross Section B-B'	48
Fig. 4.1: Recharge from various sources	51
Fig. 6.1: Lineaments in Balaghat district	56
Fig. 6.2: Well assembly for Fluoride contamination	57

PART-II: BLOCK WISE AQUIFER MAPS AND MANAGEMENT PLANS

<u>1</u>	Aquifer Maps And Management Plan for Balaghat Block	59
<u>2</u>	Aquifer Maps And Management Plan for Baihar BlockBlock	62
<u>3</u>	Aquifer Maps And Management Plan for Birsa Block	65
<u>4</u>	Aquifer Maps And Management Plan for Katangi Block Block	68
<u>5</u>	Aquifer Maps And Management Plan for Khairlanji Block Block	71
<u>6</u>	Aquifer Maps And Management Plan for Kirnapur BlockBlock	74
<u>7</u>	Aquifer Maps And Management Plan for Lalbarra BlockBlock	77
<u>8</u>	Aquifer Maps And Management Plan for Lanji Block	80
<u>9</u>	Aquifer Maps And Management Plan for Paraswada Block	83
<u>10</u>	Aquifer Maps And Management Plan for Waraseoni BlockBlock	86
<u>11</u>	CONCLUSION & RECOMMENDATIONS	89

List of Figures in Part-II

Fig.1.1: Hydrograph of Magardatta	61
Fig.2.1: Hydrograph of Parsatola	64
Fig.3.1: Hydrograph of Damoh	67
Fig.4.1: Hydrograph of Kothal katangi	70
Fig.5.1: Hydrograph of Rajegaon	73
Fig. 6.1: Hydrograph of Bonkatta	76
Fig. 7.1: Hydrograph of Paldongri	79
Fig. 8.1: Hydrograph of Kanjai	82
Fig.9.1: Hydrograph of Rangpatbaba	85
Fig.10.1: Hydrograph of Waraseoni	88
Annevidec	
ANNEXURES	02
Annexure-I: Details of Existed wells and Key wells	
Annexure-II: Pre- and post- Monsoon water level datas	
Annexure-III: Water quality datas of key wells	
Annexure-IV: Pre- and Post- Monsoon Trend	
Annexure-V: Lithologs	97
List of Tables	
Γable 1.1: Administrative set up of Balaghat district, MP	
Table 1.2: Block wise population of Balaghat district, MP	
Table 1.3: Annual Rainfall datas of Balaghat district, MP	
Table 1.4: Land use distribution of Balaghat district, MP	
Table 1.5: Geological succession of Balaghat district, MP	
Table 2.1: Locations of key wells in Balaghat district, MP	
Table 2.2: Locations of monitoring wells in Balaghat district, MP	
Table 3.1: Pre-monsoon water level datas of Balaghat district, MP	
Γable 3.2: Analysis of water level fluctuation	
Table 3.3: Water Quality of NHS Monitoring wells	
Table 3.4: Aquifer Parameters	
Γable 4: Ground Water Resource of Balaghat district, MP.	
Table 6.1:Ground Water Management plan.	58

CHAPTER-1

I. INTRODUCTION

National project on Aquifer Mapping (NAQUIM) had been taken up by CGWB to carry out detailed hydrogeological investigation on Toposheet scale of 1:50,000. Aquifer mapping is a process wherein a combination of geologic, geophysical, hydrologic and chemical analyses is applied to characterize the quantity, quality and sustainability of ground water in aquifers.

The vagaries of rainfall, inherent heterogeneity & unsustainable nature of hard rock aquifers, over exploitation of once copious alluvial aquifers, lack of regulation mechanism has a detrimental effect on ground water scenario of the Country in last decade or so. Thus, prompting the paradigm shift from "traditional groundwater development concept" to "modern groundwater management concept".

Varied and diverse hydrogeological settings demand precise and comprehensive mapping of aquifers down to the optimum possible depth at appropriate scale to arrive at the robust and implementable ground water management plans. The proposed management plans will provide the "Road Map" for ensuring sustainable management and equitable distribution of ground water resources, thereby primarily improving drinking water security and irrigation coverage. Thus the crux of NAQUIM is not merely map- ping, but reaching the goal-that of ground water management through community participation. The aquifer maps and management plans will be shared with the Administration Balaghat District for its effective implementation.

1.1 Objective and Scope

Aquifer mapping includes ground water conservation, harvesting and protocols of managing groundwater. The activities under NAQUIM are aimed at:

- Identifying the aquifer geometry,
- ♣ Aquifer characteristics and their yield potential
- **♣** Quality of water occurring at various depths
- **4** Aquifer wise assessment of ground water resources
- Preparation of aquifer maps and
- **♣** Formulate ground water management plan.

This clear demarcation of aquifers and their potential will help the agencies involved in water supply in ascertaining, how much volume of water is under their control. The robust and implementable ground water management plan will provide a road map to systematically manage the ground water resources for equitable distribution across the spectrum.

The NAQUIM report explains the aquifer geometry, type of aquifers, ground water regime behaviors, hydraulic characteristics and geochemistry of Multi-layered aquifer systems on 1:50,000 scale. The data generation will require sincere effort in organizing the field work by involving central, state agencies and creation of aquifer unit wise resource centre with local community participation in data collection and implementation of the aquifer management plan.

1.2 Approach and Methodology

National Aquifer Mapping Programme basically aims at characterizing the geometry, parameters, behavior of ground water levels and status of ground water development in various aquifer systems to facilitate Major Aquifers planning of their sustainable management. The major activities involved in this process include compilation of existing data, identification of data gaps and generation of data for filling data gaps and preparation of aquifer maps. The overall methodology of aquifer mapping is presented once the maps are prepared, plans for sustainable management of ground water resources in the aquifers mapped shall be formulated and implemented through participatory approach involving all stakeholders. It is worthwhile to mention upfront, that aquifer mapping is not simply creation of aquifer maps. It is a process for visioning how India's groundwater resources will be managed not just in the next 5-10 years, but for the next 50 years, primarily through the active participation of its citizens. Aquifer mapping will lead to strategic plans for ensuring sustainable, equitable and efficient use of India's groundwater resources for many years to come. The action plan adopted for Aquifer mapping is given in the fig 1.1 as below.

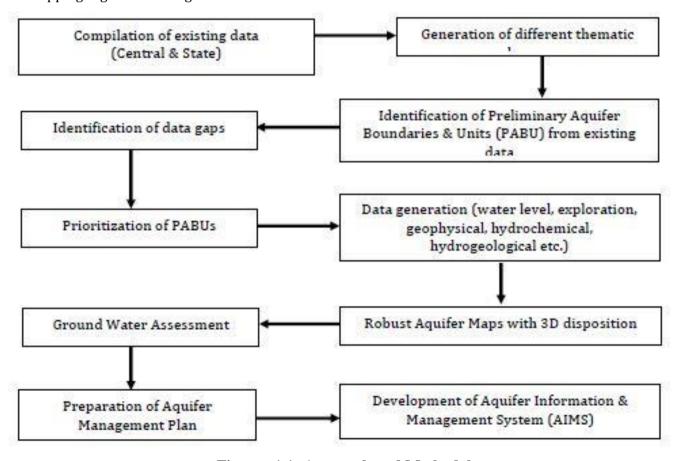


Figure –1.1: Approach and Methodology

1.3 Study area

The Balaghat District lies in the Southern part of Madhya Pradesh state are located in the southern part of Jabalpur division. It occupies the south eastern portion of the satpura range and the upper valley of the Wainganga River. The district extends from 21°19' to 22°24' north latitudes and 79°31' to 81°3' east longitude falling in Survey of India Toposheet number **64B**, **C**, **55N** and **550**. The total area of the district is 9245 Sq Km. Balaghat district is bounded by Mandla district of Madhya Pradesh to north, Dindori district to the north west, Rajnathgaon district of Chhattisgarh State to east, Gondiya and Bhandara district of Maharastra State to the south, and Seoni district of Madhya Pradesh to the west. The index map demarcating the study area is shown in the **figure-1.2**.

Balaghat consists of ten developmental blocks (Fig-1.3): Balaghat, Lalbarra, Waraseoni, Katangi, Khairlanji, Lanji, Kirnapur, Baihar, Birsa and Paraswada. Tehsil in the district is eleven i.e. Balaghat, Lalbarra, Waraseoni, Katangi, Tirodi, Khairlanji, Lanji, Kirnapur, Baihar, Birsa and Paraswada.

The district has a total population of 1701698 out of which the Schedule casts comprise 130220 (7.65%), Schedule Tribes 349463 (20.53%), other backward and general castes 1183048. According to census 2011 of the total population, there are 842178 males and 859520 females, Sex ratio - 1000:1021, which is highest in MP.

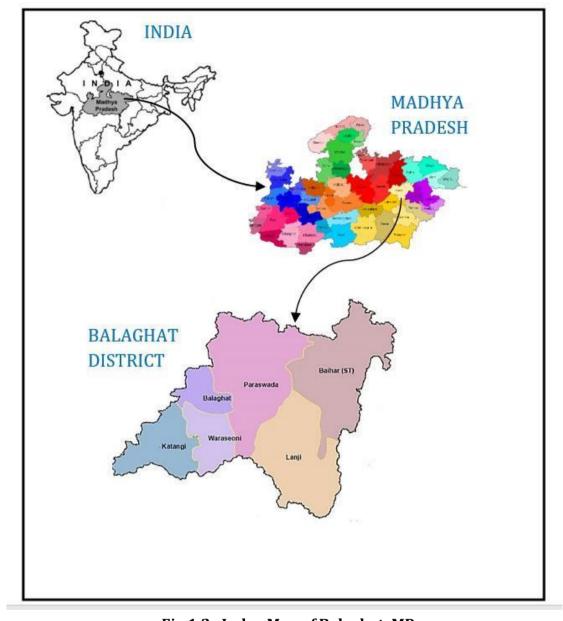


Fig 1.2: Index Map of Balaghat, MP

1.4 Administrative Setup: The District is divided into 10 Tehsils and 10 Blocks. The block wise geographical area of the district is shown in the table-1.1

Table-1.1: Administrative setup of Balaghat district, MP

S. No.	Blocks	Area Sq. Km
1	Baihar	1291.6
2	Balaghat	1222.19
3	Birsa	1415.43
4	Katangi	697.79
5	Khairlanji	487.88
6	Kirnapur	810.4
7	Lalburra	715.92
8	Lanji	871.26
9	Paraswada	1240.5
10	Waraseoni	476.03

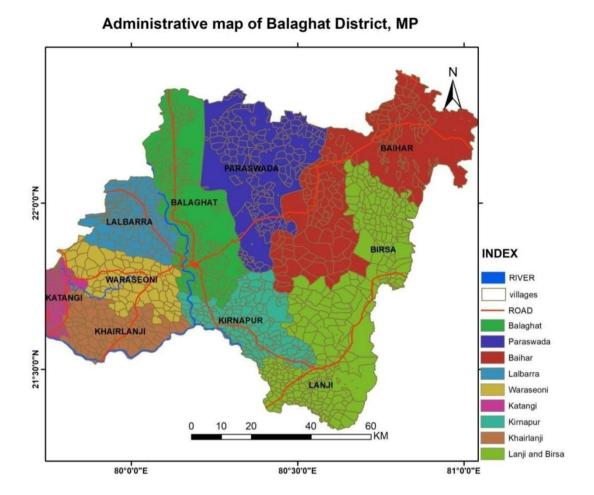


Fig1.3: Administrative Map of Balaghat, MP

1.5 Demography

As per 2011 census, the district has a total population of 3055925 (Table-1.2), out of which the Schedule casts comprise 124693 (4.08%), Schedule Tribes 300689(9.83%), other backward and general castes 1084763. According to census 2011 of the total population, there are 842178 males and 859520 females.

Table-1.2: Block wise Population Detail of Balaghat District, MP

S.							
No.	Blocks	Male	Female	SC	ST	GEN/OBC	TOTAL
1	Baihar	140250	144102	8570	158506	117276	284352
2	Balaghat	133692	135660	22609	38967	207776	221233
3	Birsa	63228	65206	3043	70765	54626	363990
4	Katangi	89980	92015	24214	31215	126566	294416
5	Khairlanji	72616	74592	13887	10936	122385	351780
6	Kirnapur	87123	88767	14103	13795	147992	341920
7	Lalburra	84860	86100	11559	23323	136078	375248
8	Lanji	93283	94341	11598	35133	140893	216052
9	Paraswada	53067	54959	4163	56491	47372	352582
10	Waraseoni	87307	88984	19517	20064	136710	538704

1.6 Climate and Rainfall

The Climate of Balaghat District is sub-tropical characterized by a hot summer and general dryness except during the southwest monsoon season. The year may be divided into four seasons. The cold season, December to February is followed by the hot season from March to about the middle of June. The period from the middle of June to September is the southwest monsoon. October and November form the post monsoon or transition period.

The normal annual rainfall of Balaghat district is 1168.12 mm (Table-1.3). Balaghat District received maximum rainfall during southwest monsoon period i.e. June to September. Thus, surplus water for ground water recharge is available only during the southwest monsoon period.

The normal maximum temperature recorded during the month of May is 43^0C and minimum during the month of December is 8^0C . The normal annual means maximum and minimum temperatures of Balaghat district are 32^0C & 8^0C respectively. The rainfall comparison of the district is shown in the figure-1.4.

During the southwest monsoon season the relative humidity ranges between 70-75%. In the rest of the year it is drier. The driest part of the year is the summer season, when relative humidity is less 34%. May is the driest month of the year.

The wind velocity is higher during the pre-monsoon period as compared to post monsoon period. The maximum wind velocity 7.7 km/hr observed during the month of June and minimum 3.9 km/hr during the month of December.

Table-1.3: Annual Rainfall Data - 2016-2020(mm)

Year		Rainfall	Rainfall	Apr Rainfall (mm)	- /	Rainfall		Aug Rainfall (mm)	Rainfall	Rainfall	Nov Rainfall (mm)	Dec Rainfall (mm)
2016	3.7	3.8	12.3	0.2	3.4	74.1	380.7	347	170.3	15.8	0	0
2017	7.7	2.8	0.9	0	7.3	105.8	290.4	263.6	187.5	49.4	0	0
2018	0	23.3	0.1	9.6	2	142.8	407.9	330.7	101.4	5.2	0	16.3
2019	28.6	18	17.9	0.4	0	35.1	353.6	447.1	448.4	20.4	1.5	7.3
2020	102.7	27.2	60.1	7.1	11.4	168	238.2	661.2	130.1	77.1	12.2	1

(Source: Indian Meteorological Department)

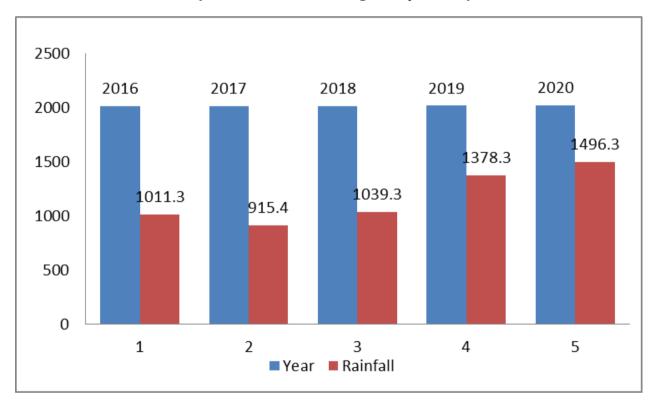


Fig-1.4: Rainfall comparison (2016-2020)

1.7 Physiography

The District of Balaghat is having unique physiographic setup. The district comprises of alluvial plains, intermontane valleys, denudational hills, Pedi plains & pediment structural hills (Fig-1.5). WainGanga, Bagh, Banjar, Shisire, Sod, tumnar along with their tributaries form Wain Ganga & Narmada river basins. The pattern of drainage on the whole is dendritic.

The Geomorphological map explains the geo-environment, geo-engineering, geohazards, mineral and ground water exploration and also interdisciplinary themes like soil, land use / land cover and forest, etc. Geomorphology plays an important role in various fields of planning. One of the major themes is the irrigation development wherein the geomorphological guides are used as one of the indicator zone for site selection. The understanding of subsurface geology is a primary requirement for planning exploration and exploitation strategies. The basement structure highs manifest itself on the surface as geomorphic anomaly like annular drainage pattern, radial pattern, sudden change in the river course etc.

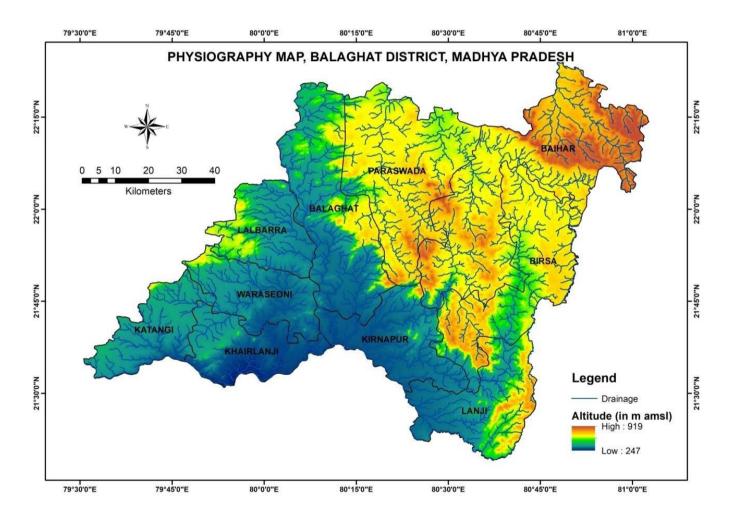


Fig.1.5: Physiography Map of Balaghat, MP

The alluvial soil cover **(Fig-1.6)** is also developed along the Bagh, Son and Deo rivers, which are major tributaries of Wainganga in Godavari drainage system **(Fig-1.7)**. The thickness of alluvium varies from 1.5m. to 10.5m.

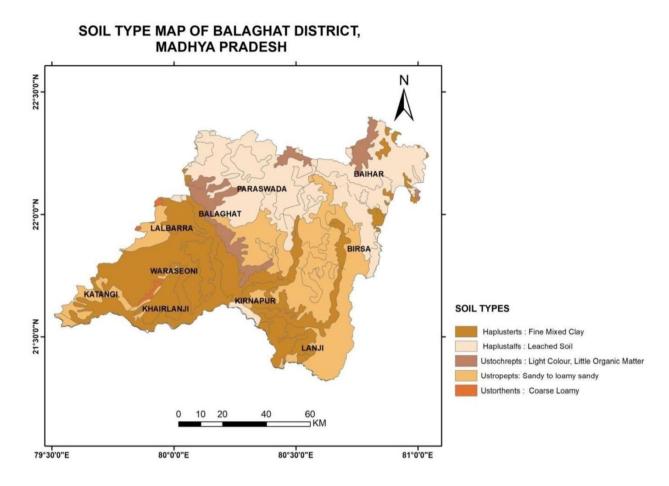


Fig-1.6:- Soil type map of Balaghat district, MP

1.7.1 Drainage

In geomorphology, a drainage system is the pattern formed by the streams, rivers, and lakes in a particular drainage basin. The drainage in the area is controlled by Wain Ganga, Bagh, Banjar, Shisire, Sod, Tumnar along with their tributaries (fig-1.7). They are governed by the topography of the land, whether a particular region is dominated by hard or soft rocks and the gradient of the land. Geomorphologists and hydrologists often view streams as being part of drainage basins. A drainage basin is the topographic region from which a stream receives runoff, through flow, and groundwater flow. Drainage basins are divided from each other by topographic barriers called a watershed. A watershed represents all of the stream tributaries that flow to some location along the stream channel. The number, size, and shape of the drainage basins found vary from one place to another.

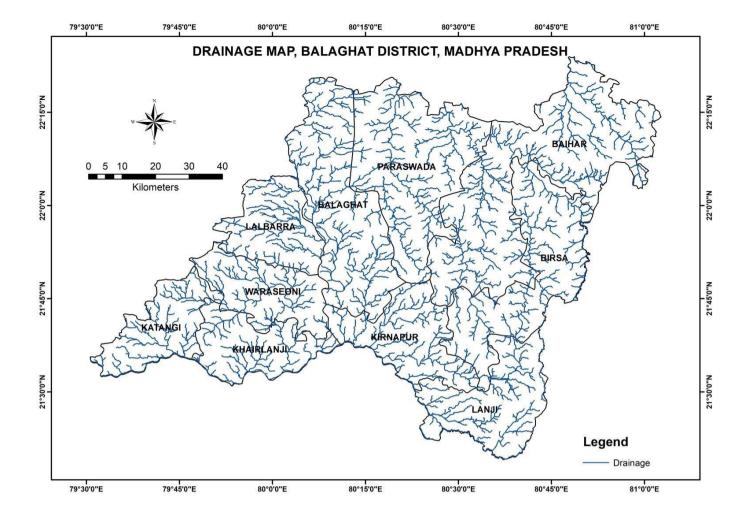


Figure 1.7: Drainage Map of Balaghat District, MP

1.7.2 Land Uses

Land use denotes how humans use the biophysical or ecological properties of land. Land use include the modification and/or management of land for agriculture, settlements, forestry and other uses including those that exclude humans from land, as in the designation of nature reserves for conservation.

The major Land use in this district is forest land covers more than 50% of the geographical area. This is followed by net sown area which covers around 33% of the geographical area. Waste land and others including water bodies and built up area covers 14% of the geo- graphical area of the Balaghat district. The block wise landuse / landcover distribution in Balaghat district is shown in the **table-1.4** and **table-1.5** and landuse / landcover map is shown in the **fig-1.8** and **fig-1.9**.

Balaghat district comprises of 10 development blocks, 690 panchayats and 1312 villages. Total geographical area of the district is 924500 Hectare, of which the gross cropped area is 431080 Hectare, of which the net sown area is 301811 Hectare and more than once crop area is 125269 Hectare. Average crop intensity of whole district is 143% of the whole geographical area.

Table-1.4: Block wise Landuse / Land cover Distribution in Balaghat District, MP

SI N			No of	TD 4.1		Area u	nder Agric	culture	A ====	A 2000	Area	
0	Name of Block	No of the Gram Panchayat		Area(Ha)	Gross Croppe d Area	Net sown Area (2) (Ha)		Cropp ing Intensi ty (%)	Area under Forest (Ha)	Area under Wastela nd(Ha)	under Other uses	
1	Balaghat	77	162	122219	46605	29090	17515	160	78308	2346	12475	
2	Kirnapur	83	148	81040	48429	30560	17869	158	36451	2438	11591	
3	Lanji	77	157	87126	46407	29278	17129	159	48299	1761	7788	
4	Lalburra	77	106	71592	42846	27900	14946	154	29380	1904	12408	
5	Waraseoni	60	80	47603	43080	28239	14841	153	8119	326	10919	
6	Khairlanji	62	84	48788	40394	29114	11280	139	7293	1019	11362	
7	Katangi	81	138	69779	39781	28740	11041	138	26036	2078	12925	
8	Paraswara	57	155	125650	36073	27986	8087	129	84111	6845	6708	
9	Baihar	55	113	129160	33915	24919	8996	136	84131	9066	11044	
10	Birsa	61	169	141543	53550	45985	7565	116	83938	5058	6562	
	Total	690	1312	924500	431080	301811	129269	143	486066	32841	103782	

Source: DAP, PPR, Land Use Plan

Land Use and Land Cover Map of Balaghat District, MP

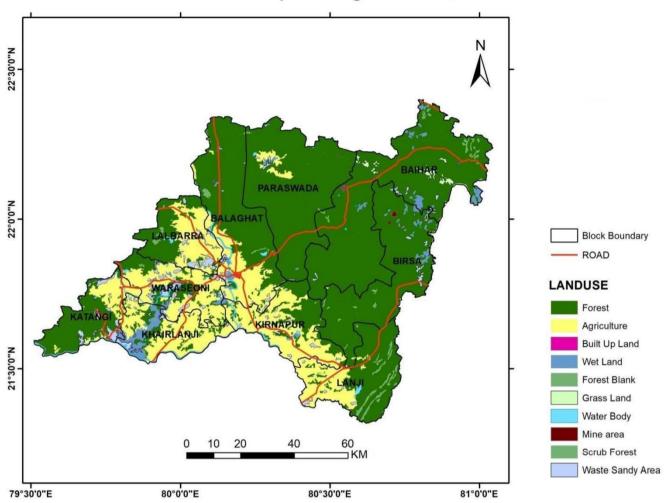
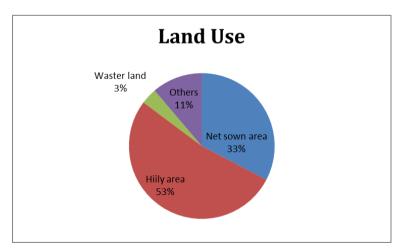



Figure -1.8: Landuse / Land cover Map of Balaghat District, MP Table-1.4(a): Land Use (in Ha)

Net sown area(Ha)	Hiily area(Ha)	Waster land(Ha)	Others(Ha)	Total(Ha)
301811	486061	32841	103782	924495

Source- DIP, Balaghat

Fig.1.9: Land use Pie Chart.

1.8 Agriculture

As already pointed out, that agriculture is the main livelihood of the people in Balaghat district. Cereals is the principal crop grown in this district, followed by other pulses, oilseeds, rice, vegetables, spices and sugarcane. Cereals are major crop of Balaghat district. It is cultivated in 2701.26 Sq.km under rain fed and 311.9 Sq.km under irrigated condition. Pulses, Oil seeds, Fibre, rice, Sugarcane are other crops grown in kharif season and Wheat and Mustard are major crops of Rabi season in the district.

The climate of the district is congenial for successful cultivation for oilseed, pulses, cereals in kharif and wheat, sugarcane in rabi are grown predominantly in the district. The Ground water source (Open Well, bore well) based irrigation caters to the major area. The block wise agricultural statistics for Balaghat district is shown below:

Crop Irrigation Status of Baihar Block

SI	Name of	Crop Type	Kharif	Rabi (Area in sq km)			Summer Crop (Area in Sq km)			Horticulture and Plantation Crops (Area in Sq km)				
No	o Block					Irrigated	rain fed	Total	Irrigated	rain fed	Total(A	Irrigated	rain fed	Total
			Kharif(Areain	Rain fed	Total(Area	(Area in	(Area in	(Area	(Area in	(Area in	rea in	(Area in	(Area in	(Area in
			Sq. km)	(Area in Sq.	in Sq. km)	Sq. km)	Sq. km)	in Sq.	Sq. km)	Sq. km)	Sq. km)	Sq. km)	Sq. km)	Sq. km)
				km										
1		A) Cereals	27.03	154.39	181.42	1.6	27.4	29	0.61	0	0.61	0	0	0
2		B) Coarse Cereals	0	36.72	36.72	0	0	0	0	0	0	0	0	0
3	Baihar	C) Pulses	0	17.85	17.85	0.9	19.13	20.03	0.2	0	0.2	0	0	0
4		D) Oil Seeds	0	12.98	12.98	1.75	27.96	29.71	0	0	0	0	0	0
5		E) Fibre	0	2	2	0	0	0	0	0	0	0	0	0
6		F) Any Other CropsSugarcane	0	0	0	0.2	0	0.2	0	0	0	10.41	0	10.41
Total 27.03 221.96 248.99							74.49	78.94	0.81	0	0.81	10.41	0	10.41
			•	Source: Depar	rtment of Ag	riculture, A	griculture S	tatistic o	f State, Agr	istat		•	•	•

Crop Irrigation Status of Balaghat Block

SI	Name of Block	Crop Type	Khari	f(Area in Sq.	Rabi(Area in sq km)			Summer (Crop(Area i	n Sq km)	Horticulture and Plantation Crops (Area in Sq km)			
No			Kharif(Area in Sq. km)	Rainfed(Ar ea in Sq. km	Total(Area in Sq. km)	Irrigated(Area in Sq. km)	Rainfed(Area in Sq. km)	Total(Are a in Sq. km)	Irrigated(Area in Sq. km)	Rainfed(Area in Sq. km	Total(Are a in Sq. km)	Irrigated(Area in Sq. km)	Rainfed(Area in Sq. km	Total(Are a in Sq. km)
1		A) Cereals	154.59	113.47	268.06	10.47	40.53	51	16.45	0	16.45	0	0	0
2		B) Coarse Cereals	0	1.73	1.73	0	0	0	0	0	0	0	0	0
3	D-1b-4	C) Pulses	0	17.94	17.94	14.5	50.79	65.29	0.95	0	0.95	0	0	0
4	Balaghat	D) Oil Seeds	0	2.62	2.62	2.51	27.85	30.36	0.05	0	0.05	0	0	0
5		E) Fibre	0	0.2	0.2	16	0	0	0	0	0	0	0	0
6		F) Any Other CropsSugarcane	0	0	0	0.35	0	35	0	0	0	11.05	0	11.05
	Т	otal	154.59	135.96	290.55	27.83	119.17	147	17.45	0	17.45	11.05	0	11.05
	Source: Department of Agriculture, Agriculture Statistic of State, Agristat													

Crop Irrigation Status of Birsa Block

	Name		Kharif	(Area in Sq.	km)	Rabi(<i>A</i>	Area in sq k	m)	Summer C	rop(Area in	Sq km)	Horticulture and Plantation Crops (Area in Sq km)			
SI no	of Block	Crop Type	Kharif(Ar ea in Sq.	Rainfed(Area in	Total(Are	Irrigated(Area in	Rainfed(Area in	Total(Are	Irrigated(Area in	Rainfed(Area in	Total(Are a in Sq.	Irrigated(Area in	Rainfed(Area in	Total(Are a in Sq.	
			km)	Sq. km	km)	Sq. km)	Sq. km)	km)	Sq. km)	Sq. km	km)	Sq. km)	Sq. km	km)	
1		A) Cereals	53.98	328.52	382.5	1.93	16.07	18	0.39	0	0.39	0	0	0	
2	Birsa	B) Coarse Cereals	0	64.5	64.5	0	0	0	0	0	0	0	0	0	
3		C) Pulses	0	9	9	1	16.07	17.07	0.29	0	0.29	0	0	0	
4		D) Oil Seeds	0	3.55	3.55	1	27.7	28.7	0	0	0	0	0	0	
5		E) Fibre	0	0.1	0.1	0	0	0	0	0	0	0	0	0	
6		F) Any Other CropsSugarcane	0	0	0	0.2	0	0.2	0	0	0	11.2	0	11.2	
	То	tal	53.98	405.67	459.65	4.13	59.84	63.97	0.68	0	0.68	11.2	0	11.2	
				Source: D	epartment	of Agricultu	re, Agricult	ure Statistic	of State, A	gristat		•			

Crop Irrigation Status of Katangi Block

	Name of		Kharif(Are	a in Sq. km)		Rabi(Area	in sq km)		Summer Crop(Area in Sq km)			Horticulture and Plantation Crops (Area in Sq km)		
SI No	Block	Сгор Туре	Kharif (Ar ea)in Sq. km)	Rain fed(Area in Sq. km	Total (Are a in Sq. km)	Irrigated(Area in Sq. km)	Rain fed(Area in Sq. km)	Total (Are a in Sq. km)	Irrigated(Area in Sq. km)	Rain fed(Area in Sq. km	Total(Are a in Sq. km)	Irrigated(Area in Sq. km)	Rain fed(Area in Sq. km	Total(Are a in Sq. km)
1		A) Cereals	219.59	51.37	270.96	15.48	0.52	16	13.05	0	13.05	0	0	0
2		B) Coarse Cereals	0	1.8	1.8	0	0	0	0	0	0	0	0	0
3		C) Pulses	0	6.2	6.2	9	31.34	40.34	0	0	0	0	0	0
4	Katangi	D) Oil Seeds	0	2.15	2.15	4.47	27.74	32.21	0.7	0	70	0	0	0
5		E) Fibre	0	0.06	0.06	0	0	0	0	0	0	0	0	0
6		F) Any Other Crops. Sugarcane	0	0	0	6.23	0	6.23	0	0	0	8.11	0	8.11
Total		I	219.59	61.58	281.17	35.18	59.6	94.78	13.75	0	13.75	8.11	0	8.11
			I	Source: Dep	partment of	Agriculture	e, Agricultu	re Statistic c	of State, Agr	ristat	ı	I		1

Crop Irrigation Status of Kirnapur Block

	Name of		Kharif(Are	a in Sq. km))	Rabi(Area	in sq km)		Summer Crop(Area in Sq km)			Horticulture and Plantation Crops (Area in Sq km)		
SI No	Block	Crop Type	Kharif(Ar	Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are
	DIOCK		ea in Sq.	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.
			km)	Sq. km	km)	Sq. km)	Sq. km)	km)	Sq. km)	Sq. km	km)	Sq. km)	Sq. km	km)
1		A) Cereals	136.59	152.41	289	5.01	30.99	36	25.78	0	25.78	0	0	0
2		B) Coarse Cereals	0	0.52	0.52	0	0	0	0	0	0	0	0	0
3		C) Pulses	0	13.32	13.32	13.15	65.81	78.96	0.35	0	0.35	0	0	0
4	Kirnapur	D) Oil Seeds	0	1.47	1.47	1.6	28.49	30.09	0	0	0	0	0	0
5		E) Fibre	0	0.44	0.44	0	0	0	0	0	0	0	0	0
6		F) Any Other CropsSugarcane	0	0	0	0.85	0	0.85	0	0	0	7.51	0	7.51
Total	I.		136.59	168.16	304.75	20.61	125.29	145.9	26.13	0	26.13	7.51	0	7.51
Source: Department o					of Agricultu	re, Agricult	ure Statistic	of State, A	gristat	•		•	•	

Crop Irrigation Status of Khairlanji Block

SI No	Name of	Cron Type	Kharif(Area in Sq. I	km)	Rabi(<i>i</i>	Area in sq kı	m)	Summer C	rop(Area in	Sq km)		ture and Pla s (Area in So	
31 110	Block	Crop Type	Kharif(Ar ea in Sq. km)	Rainfed(Area in Sq. km	Total(Area in Sq. km)	Irrigated(Area in Sq. km)		Total(Area in Sq. km)	_	Rainfed(Area in Sq. km	Total(Area in Sq. km)		Rainfed(Area in Sq. km	Total(Area in Sq. km)
1		A) Cereals	156.79	116.19	272.98	9.56	6.44	16	12.84	0	12.84	0	0	0
2		B) Coarse Cereals	0	0.31	0.31	0	0	0	0	0	0	0	0	0
3		C) Pulses	0	9.18	9.18	8.5	38.45	46.95	0.7	0	70	0	0	0
4	Khairlanji	D) Oil Seeds	0	1.44	1.44	1.5	26.52	28.02	0.2	0	20	0	0	0
5		E) Fibre	0	0.43	0.43	0	0	0	0	0	0	0	0	0
		F) Any Other												
6		CropsSugarcane	0	0	0	6.8	0	6.8	0	0	0	8.09	0	8.09
	Т	otal	156.79	127.55	284.34	26.36	71.41	97.77	13.74	0	13.74	8.09	0	8.09
			ı	Source: De	partment o	f Agricultur	e, Agricultur	e Statistic o	f State, Agri	stat	ı	l	ı	1

Crop Irrigation Status of Lanji Block

			Kharif	(Area in So	q. km)	Rabi	(Area in sq	km)	Summer (Crop(Area i	in Sq km)		ture and Pl	
SI No	Name	Crop Type	Kharif(Ar	Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are
	of Block		ea in Sq.	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.
			km)	Sq. km	km)	Sq. km)	Sq. km)	km)	Sq. km)	Sq. km	km)	Sq. km)	Sq. km	km)
1		A) Cereals	152.09	126.68	278.77	18.74	23.16	41.9	26.85	0	26.85	0	0	0
2		B) Coarse Cereals	0	1.26	1.26	0	0	0	0	0	0	0	0	0
3		C) Pulses	0	7.45	7.45	17.4	47.42	64.82	0.26	0	26	0	0	0
4		D) Oil Seeds	0	2.9	2.9	1.75	29.21	30.96	0	0	0	0	0	0
5	Lanji	E) Fibre	0	0.25	0.25	0	0	0	0	0	0	0	0	0
6		F) Any Other CropsSugarcane	0	0	0	2.15	0	2.15	0	0	0	6.5	0	6.5
		Total	152.09	138.54	290.63		99.79	139.83	27.11	0		6.5	0	6.5
Source: Department of						l Agriculture	l e, Agricultu	re Statistic	of State, A	l Agristat	<u> </u>	<u> </u>		1

Crop Irrigation Status of Lalburra Block

	Name of		Kharif	(Area in So	զ. km)	Rabi	(Area in sq	km)	Summer	Crop(Area	in Sq km)		ture and P s (Area in S	
SI No	Block	Crop Type	Kharif(Ar	Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Area
	DIUCK		ea in Sq.	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	in Sq.
			km)	Sq. km	km)	Sq. km)	Sq. km)	km)	Sq. km)	Sq. km	km)	Sq. km)	Sq. km	km)
1		A) Cereals	236.29	32.55	268.84	18.14	23.36	41.5	12.74	0	12.74	0	0	0
2		B) Coarse Cereals	0	0.3	0.3	0	0	0	0	0	0	0	0	0
3		C) Pulses	0	7.65	7.65	16.75	43.09	59.84	0.95	0	0.95	0	0	0
4	Lalburra	D) Oil Seeds	0	2.06	2.06	3.15	27.21	30.36	0.05	0	5	0	0	0
5		E) Fibre	0	0.13	0.13	0	0	0	0	0	0	0	0	0
		F) Any Other												
6		CropsSugarcane	0	0	0	0.02	0	2	0	0	0	4.02	0	4.02
Total 236.29 42.69 278.98							93.66	131.72	13.74	0	13.74	4.02	0	4.02
	Source: Department of Agriculture, Agriculture Statistic of State, Agristat													

Crop Irrigation Status of Paraswada Block

	N. 6		Kha	arif(Area ir	Sq. km)	R	abi(Area ir	n sq km)	Summer	Crop(Area	in Sq km)		ture and PI (Area in S	
SI No	Name of Block	Crop Type	Kharif(Ar	Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are
	Biock		ea in Sq.	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.
			km)	Sq. km	km)	Sq. km)	Sq. km)	km)	Sq. km)	Sq. km	km)	Sq. km)	Sq. km	km)
1		A) Cereals	36.37	177.38	213.75	5.5	19.5	25	2.38	0	2.38	0	0	0
2		B) Coarse Cereals	0	48.38	48.38	0	0	0	0	0	0	0	0	0
3		C) Pulses	0	14.73	14.73	2.5	14.15	16.65	0.36	0	0.36	0	0	0
4	Paraswada	D) Oil Seeds	0	2.9	2.9	0.72	28.85	29.57	0	0	0	0	0	0
5		E) Fibre	0	0.08	0.08	0	0	0	0	0	0	0	0	0
		F) Any Other												
6		CropsSugarcane	0	0	0	0.02	0	2	0	0	0	6.91	0	6.91
	Total 36.37 243.47 279.84						62.5	71.24	2.74	0	2.74	6.91	0	6.91
	Source: Department of Agriculture, Agriculture Statistic of State, Agristat													

Crop Irrigation Status of Waraseoni Block

GL			Kharif	(Area in So	ղ. km)	Rabi	(Area in sq	km)	Summer Crop(Area in Sq km)			Horticulture and Plantation Crops (Area in Sq km)		
SI No	Name of Block	Crop Type	Kharif(Ar	Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are
INO	DIOCK		ea in Sq.	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.
			km)	Sq. km	km)	Sq. km)	Sq. km)	km)	Sq. km)	Sq. km	km)	Sq. km)	Sq. km	km)
1		A) Cereals	260.26	14.72	274.98	21.46	16.04	37.5	14.56	0	14.56	0	0	0
2		B) Coarse Cereals	0	0.24	0.24	0	0	0	0	0	0	0	0	0
3		C) Pulses	0	4.81	4.81	13.6	37.34	50.94	0.95	0	0.95	0	0	0
4	Waraseoni	D) Oil Seeds	0	1.77	1.77	2.1	29.42	31.52	0.1	0	0.1	0	0	0
5		E) Fibre	0	0.35	0.35	0	0	0	0	0	0	0	0	0
		F) Any Other												
6		CropsSugarcane	0	0	0	0.24	0	0.24	0	0	0	12.84	0	12.84
	Total 260.26 21.89 282.15						82.8	120.2	15.61	0	15.61	12.84	0	12.84
	Source: Department of Agriculture, Agriculture Statistic of State, Agristat													

Crop Irrigation Status of Balaghat District

			Kharif	(Area in So	q. km)	Rabi	(Area in sq	km)	Summer	Crop(Area	in Sq km)	Horticult	ure and Pl	antation
SI No	Name of		Kharif(Ar	Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are	Irrigated(Rainfed(Total(Are
31 110	District		ea in Sq.	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.	Area in	Area in	a in Sq.
		Crop Type	km)	Sq. km	km)	Sq. km)	Sq. km)	km)	Sq. km)	Sq. km	km)	Sq. km)	Sq. km	km)
1		A) Cereals	1433.58	1267.68	2701.26	107.89	204.01	311.9	125.65	0	125.65	0	0	0
2		B) Coarse Cereals	0	155.76	155.76	0	0	0	0	0	0	0	0	0
3		C) Pulses	0	108.13	108.13	97.3	363.59	460.89	5.01	0	5.01	0	0	0
4	Balaghat	D) Oil Seeds	0	33.84	33.84	20.55	280.95	301.5	1.1	0	1.1	0	0	0
5		E) Fibre	0	2.06	2.06	0	0	0	0	0	0	0	0	0
		F) Any Other												
6		CropsSugarcane	0	0	0	17.06	0	17.06	0	0	0	86.64	0	86.64
	To	otal	1433.58	1567.47	3001.05	242.8	848.55	1091.35	131.76	0	131.76	86.64	0	86.64
	•													
	Source: Department of Agriculture, Agriculture Statistic of State, Agristat													

1.9 Geology

Geologically Balaghat M.P. has the older rocks of Precambrian and Archean age. A good amount of work has been carried out during the 18th and 19th century in the search of manganese ore deposits in Central India by the team of geologists of British Geological Survey. The controversial nature of the rocks of Balaghat area was studied in great details by the officers of the Geological Survey of India, State Directorate of Geology and Mining, Scientists of Universities and Research Organizations.

In this area, the rocks belonging to the Tirodi- Sausar –Chilpi Group and Bharweli Group are found. Amgaon granite/ Migmatites and Nandgaon volcanics are found in the south eastern part of Balaghat District, M.P. The Regional trend of the low grade metamorphic rocks is exposed in the ENE-WSW, with a doubly plunging syncline trending between Waraseoni in the west to Mukki in the east. The rocks of Chilpi Ghats Group nowhere comes in contact with the Manganese Belt and it is separated by interfering gneissic country through which a major ductile mylonite zone, termed as 'Central Indian Suture' passes in this area. The manganese bearing rocks of Tirodi-Sausar Group and Bharweli- Ukwa group are exposed to the north of this so called Central Indian Suture (CIS). The metamorphosed rocks of Chilpi group are confined to the southern and south –eastern part of the Balaghat District (Fig 2.0).

Earliest account of the rocks of Bharweli- Ukwa belt in Balaghat district had been given by Bose (1888-1889) who investigated this area. He had described mica- phyllite, sericite-schist, sandstone-quartzite and jaspery quartzite associated with manganese ores within the Chilpi Ghat Series. The ore bed was assumed to be marking the base of the series, overlying the massive gneiss, weathering like gritstone with a denudational unconformity (Table- 1.5).

TABLE-1.5- Geological succession of Balaghat district, MP

REGIONAL STRATIGRAPHY OF BALAGHAT AREA

(after BOSE 1889 in FERMOR1909) CHILPI GHAT SERIES

Metamorphic and crystalline series(=Baihar gneiss by Bose)

Intrusive granite (=Chauria Gneiss)

(=Bundelkhand granite by Bose)

Older metamorphics

GEOLOGY MAP OF THE BALAGHAT DISTRICT MP

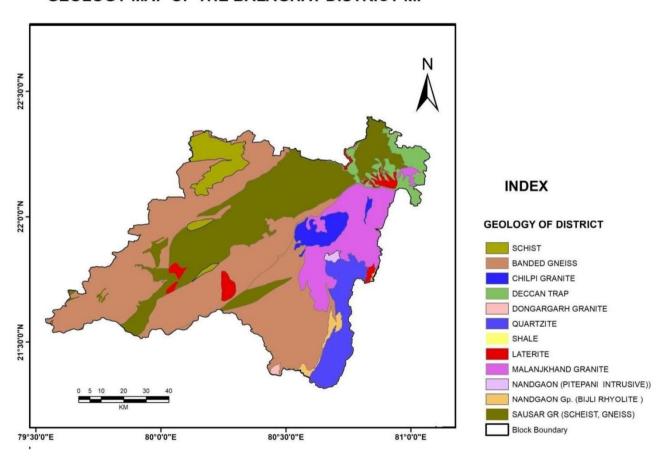


Fig-2.0: Geological map of the Balaghat District

1.9.1 MAJOR LITHOLOGY

Mica Schist:

These rocks are exposed in Bharweli mine area trending ENE-WSW. The sericite schist is fine to medium grained. It is greenish to dark greyish black in colour. Some carbonaceous matter is identifiable. Sericite schist grades into medium grained mica schist towards the northern part of study area. The mica schist is fine to medium grained and is grey to brownish grey in colour. Sericite schist and mica schist bands gradually merge into one another.

The sericite schist is fine grained and it contains quartz, flakes of sericite and muscovite. The dimensionally oriented flakes of sericite, quartz and occasionally muscovite define the schistosity. Extensive crushing and granulation has taken place with subsequent shearing and faulting. Quartz mica schist is medium grained, containing essentially quartz muscovite and biotite with occasional development of garnet. Garnet is syntectonic.

Granites

In the Balaghat area the granites are intruded in the form of batholith in the existing metasedimentary rocks, which have transformed to granite gneiss. The large outcrops of the granites are exposed in Lamta -Charegaon -Nagarwada area, continued up to Malanjkhand-Lanji-Amagaon area. In the Lalburra-Tirodi-Barghat (Seoni) area, pink fine-grained varieties of granite with biotite gneiss and granite gneiss are exposed. The exposure of the granitic rocks in the study area is less. Either they are covered by alluvium or by dense reserve forest and so, much of the work is based on the regional studies.

Following varieties of granites have been identified in the area.

- 1. Fine grained grey granites
- 2. Fine grained pink granites

Granite gneiss

These rocks are exposed in the south of Bharwelli Group, along Wainganga river valley in Balaghat area. The biotite hornblende rich granite rock shows gneissose structure. Coloured mineral show parallelism in different patterns such a streaky, curly and contorted type. They are medium to coarse grained, non-porphyritic rocks, pink grey in colour consisting of microcline, plagioclase quartz and biotite. The important accessories are zircon, sphene, fluorite, apatite, ilmenite, and magnetite. The texture is granoblastic. Microcline shows crosshatched twins both coarse and fine in nature. Small inclusions of plagioclase with crenulated margin also occur in the microcline. The oligoclase is protruded into microcline and shows a more acid margin against microcline, which is probably of later origin. Quartz is allotriomorphic and forms lenticular patch with irregular margin. A fine grained specimen shows replacement of oligoclase by quartz, gradually working its way along twin planes. Subhedral biotite flakes do not show any orientation. These are highly pleochroic in nature. It is unoriented and is in Subhedral flakes. Biotite is sometimes seen with muscovite which is because of its vermicular habit. The hornblende is also strongly/ feebly pleochroic and occurs as small Subhedral grains. Sphene, apatite and zircon form small Subhedral crystals, which are distributed irregularly in the thin sections.

The granite gneiss-foliated varieties are also exposed at Shankar Ghat, near the Road Bridge to Seoni. Mineralogically, the rocks are similar to above. Biotite forms evenly distributed wavy, discontinuous streaks. Quartz and feldspar are lenticular in between streaks. The rock is cut by coarse-grained thin pegmatite vein, obliquely across the gneissic foliation. Microcline is last to crystallize, but in some sections the oligoclase has inclusions of microcline in optical continuity with the larger pieces of microcline or have crenulated margin against microcline. The quartz has grown at the expense of the granitic material, i.e., quartz, feldspar and biotite. The larger quartz grains show undulose extinction, but they include small quartz grains which are unstrained. Quartz has corroded the plagioclase along twin planes.

Alluvium:

The Wainganga River and its tributaries have a thick cover of alluvium, where the main paddy fields are situated. The area has detritus soil derived from weathering of rocks, which is constantly washed down from the hill slopes by torrential rains and are admixed with the alluvial materials in the plains. The alluvial soil cover is also developed along the Bagh, Son and Deo rivers, which are major tributaries of Wainganga in Godavari drainage system (Fig-1.7). The thickness of alluvium varies from 1.5m. to 10.5m.

CHAPTER-2

II. DATA COLLECTION AND GENERATION

2.1 Data Collection and Compilation

The data collection and compilation for various components was carried out as given below.

- Hydrogeological Data Current and historical water levels along with water level trend data of monitoring wells representing Aquifer-I (Shallow aquifer) of CGWB. The weathered zone thickness (aquifer-I), lithological details of deeper aquifers (aquifer- II) of exploratory wells were also collected and compiled.
- Hydro chemical Data Ground water quality data of monitoring wells of CGWB representing shallow aquifer and data from exploratory wells representing deeper aquifer.
- Exploratory Drilling Ground water exploration data of exploratory wells of CGWB.
- Hydro meteorological Data Long term rainfall data for the whole district and for each block from Indian meteorological Department and Water Resource Department.
- Cropping Pattern Data Data on prevailing cropping pattern from District Irrigation Plan, Balaghat district.
- For data generation 41 no's of key wells have been established throughout the district and collected water sample.

2.2 Ground Water Exploration

Central Ground Water Board, has not taken up any exploratory drilling in Balaghat district so for. The state agencies and private drilling agencies have constructed some shallow as well as deep tube wells. However, Central Ground Water Board has constructed 5 piezometers at different places under hydrology project in parts of study area. In addition to this, 41 nos of key wells were established in Balaghat district excluding forest area **(Fig-2.1)**. The details of piezometers and Key wells are given in **Annexure-I.**

LOCATIONS OF NHS WELLS & KEY OBSERVATION WELLS OF BALAGHAT DISTRICT, MP

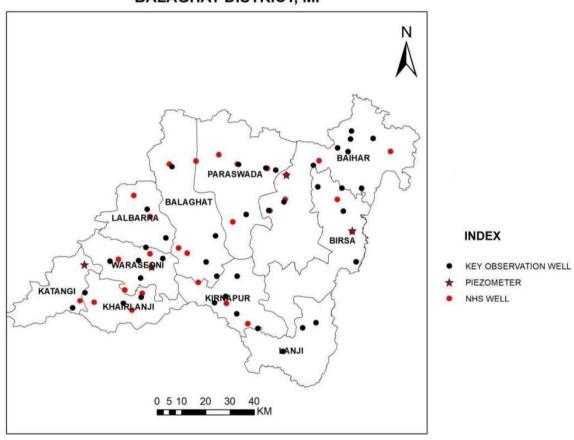


Fig-2.1: Locations of Piezometers, key wells and NHS wells in Balaghat, MP

2.3 Ground Water Monitoring Wells

Central Ground Water Board has been carrying out water level monitoring through ground water monitoring wells since last two decades. The water levels of the monitoring wells are being monitored four times in a year during the month January, May, August and November. The locations of monitoring wells are shown in **Fig. 2.1 and table-2.1 & 2.2.**

Table. 2.1:- Location details of key wells

		Table. 2.1:	Location				Weathering
SI No	District	Locations	Source	Long	Lat	Depth(m)	_
1	Balaghat	Linga	HP		21.77994	65	33
3	Balaghat	Khursuni	DW		21.72763	20	20
4	Balaghat	Bhalwa	HP	80.36865	21.72773	100	30
5	Balaghat	Chhotapala	HP	80.32559	21.65288	83	30
6	Balaghat	Binora	DW	80.36673	21.5874	100	28
7	Balaghat	Benegaon	Bore	80.44574	21.53376	50	30
8	Balaghat	Lohara	Bore	80.53837	21.44996	100	30
9	Balaghat	Keratola	HP	80.66111	21.555	105	30
10	Balaghat	Khandwa	Bore	80.6116	21.53553	116	35
11	Balaghat	Paraswada	Bore	80.28509	21.62844	30	20
12	Balaghat	Kaydi	HP	80.09305	21.79298	100	25
13	Balaghat	Kabuliwara	HP	80.01087	21.72047	65	30
14	Balaghat	Sonjhara	HP	80.01302	21.64961	85	33
15	Balaghat	Saleteka	HP	79.94709	21.62682	100	30
16	Balaghat	Bonkata	HP	79.75906	21.60999	110	35
17	Balaghat	Paraswadaghat	HP	79.80452	21.66632	150	20
18	Balaghat	Serpar	HP	79.89732	21.78287	180	20
19	Balaghat	Saongi	HP	80.00318	21.7856	100	32
20	Balaghat	Nayatola	HP	80.03107	21.83425	120	35
21	Balaghat	Pathersahi	HP	80.03505	21.97455	100	20
22	Balaghat	Birsola	HP	80.10475	21.86903	100	30
23	Balaghat	Pipartola	HP	80.28837	21.87706	85	80
24	Balaghat	Chiklaghodi	Bore	80.4019	21.95615	80	30
25	Balaghat	Samnapur	HP	80.48612	21.97024	83	20
26	Balaghat	Ramatola	Bore	80.54184	22.00241	52	30
27	Balaghat	Sakrai Tola	HP	80.65059	22.13721	100	10
28	Balaghat	Khursipar	HP	80.74069	22.20172	60	10
29	Balaghat	Gaddi	HP	80.78856	22.23419	80	20
30	Balaghat	Jobati Tola	Bore	80.8726	22.23686	50	10
31	Balaghat	Brahman Tola	HP	80.7924	22.26429	70	20
32	Balaghat	Nabalpur	HP	80.77963	22.18824	100	30
33	Balaghat	Mohgaon	Bore	80.66772	22.05749	60	20
34	Balaghat	Palera	HP	80.75653	22.05299	60	30
35	Balaghat	Mundai	HP	80.82948	22.05256	100	35
36	Balaghat	Salghat	HP	80.76173	21.96791	60	30
37	Balaghat	Saletekri	HP	80.80892	21.78116	100	60
38	Balaghat	Singhodi	HP	80.51153	22.11878	130	30
39	Balaghat	Khurmundi	HP	80.47527	22.1261	130	30
40	Balaghat	Bagholi	HP	80.37359	22.1399	50	50
41	Balaghat	Bondua	HP	80.12726	22.1318	65	20

Table.2.2:- Location details of Monitoring wells

LATITUDE	LONGITUDE	SITE_TYPE	DISTRICT_NAME	BLOCK_NAME	VILLAGE_NAME	DEPTH
22°6'15" N	80°33'5" E	Bore Well	BALAGHAT	BAIHAR	Baihar	58.2
22°6'15" N	80°33'5" E	Dug Well	BALAGHAT	BAIHAR	Baihar	16.1
22°11'0" N	80°42'50" E	Dug Well	BALAGHAT	BAIHAR	Bhaisanghat	7.5
22°14'9" N	80°52'15" E	Dug Well	BALAGHAT	BAIHAR	Jawaditula	10
21°55'48" N	80°21'7" E	Dug Well	BALAGHAT	BAIHAR	Laugur	12
22°3'7" N	80°40'50" E	Dug Well	BALAGHAT	BAIHAR	Mohagaon	10.91
22°9'15" N	80°40'20" E	Dug Well	BALAGHAT	BAIHAR	Mukki	9.5
22°0'42" N	80°32'47" E	Dug Well	BALAGHAT	BAIHAR	Parsatola	12
21°58'10" N	80°29'25" E	Dug Well	BALAGHAT	BAIHAR	Samnapur	13.65
22°11'20" N	80°56'13" E	Dug Well	BALAGHAT	BAIHAR	Supkhar	13.9
21°48'46" N	80°11'1" E	Dug Well	BALAGHAT	BALAGHAT	Balaghat	11.2
22°8'30" N	80°7'30" E	Dug Well	BALAGHAT	BALAGHAT	Lamta	12.6
21°57'56" N	80°7'30" E	Dug Well	BALAGHAT	BALAGHAT	Magardarta	10
21°42'18" N	80°13'30" E	Dug Well	BALAGHAT	BALAGHAT	Saleteka New	15.4
22°0'40" N	80°44'23" E	Dug Well	BALAGHAT	BIRSA	Birsa	9.9
21°53'47" N	80°47'43" E	Bore Well	BALAGHAT	BIRSA	Damoh	33.15
21°53'47" N	80°47'43" E	Dug Well	BALAGHAT	BIRSA	Damoh	11
21°46'50" N	80°48'36" E	Dug Well	BALAGHAT	BIRSA	Saletekhri	12.05
21°46'15" N	79°48'12" E	Dug Well	BALAGHAT	KATANGI	Katangi	7.75
21°46'15" N	79°48'12" E	Bore Well	BALAGHAT	KATANGI	Katangi-D	59.82
21°46'15" N	79°48'12" E	Bore Well	BALAGHAT	KATANGI	Katangi-S	20.94
21°42'50" N	79°47'50" E	Dug Well	BALAGHAT	KATANGI	Katedhara	8.5
21°36'20" N	79°45'45" E	Dug Well	BALAGHAT	KHAIRLANJI	Bonkatta	9.75
21°38'10" N	79°47'10" E	Dug Well	BALAGHAT	KHAIRLANJI	Garraghoda	17.43
21°36'4" N	79°58'45" E	Dug Well	BALAGHAT	KHAIRLANJI	Khairlanji	9.1
21°37'50" N	79°50'20" E	Dug Well	BALAGHAT	KHAIRLANJI	Miragpur	11.02
21°39'52" N	80°1'2" E	Dug Well	BALAGHAT	KHAIRLANJI	Rampalli	9.66
21°33'5" N	80°24'30" E	Dug Well	BALAGHAT	KIRNAPUR	Bhanegaon	14.5
21°37'35" N	80°19'43" E	Dug Well	BALAGHAT	KIRNAPUR	Kirnapur	11.3
21°37'50" N	80°15'0" E	Dug Well	BALAGHAT	KIRNAPUR	Rajegaon	13.8
22°1'33" N	79°59'8" E	Dug Well	BALAGHAT	LALBARRA	Kanjai	10
21°56'51" N	80°2'48" E	Dug Well	BALAGHAT	LALBARRA	Katang Tola	9
21°23'52" N	80°37'37" E	Dug Well	BALAGHAT	LANJI	Baghatola	10
21°37'25" N	80°39'35" E	Dug Well	BALAGHAT	LANJI	Deverbeli	10
22°8'30" N	80°22'10" E	Dug Well	BALAGHAT	PARASWADA	Bagholi	8.5
22°7'30" N	80°28'50" E	Dug Well	BALAGHAT	PARASWADA	Khurmundi	10.9
22°10'35" N	80°18'3" E	Dug Well	BALAGHAT	PARASWADA	Paraswara	9.35
22°9'10" N	80°13'0" E	Dug Well	BALAGHAT	PARASWADA	Rangpatbaba	9
21°40'35" N	79°57'8" E	Dug Well	BALAGHAT	WARASEONI	Amai	9.1
21°49'55" N	80°9'6" E	Dug Well	BALAGHAT	WARASEONI	Kanki	11.7
21°47'25" N	79°55'43" E	Dug Well	BALAGHAT	WARASEONI	Kochwahi	7.3
21°48'38" N	80°2'45" E	Dug Well	BALAGHAT	WARASEONI	Newargaon	10.6
21°45'48" N	80°3'7" E	Bore Well	BALAGHAT	WARASEONI	Waraseoni	44.95
21°45'48" N	80°3'7" E	Dug Well	BALAGHAT	WARASEONI	Waraseoni	10.99

2.4: Ground Water Quality

The suitability of ground water for drinking/irrigation/industrial purposes is determined keeping in view the effects of various chemical constituents present in water on the growth of human being, animals and various plants and also on industrial requirement. Though many ions are very essential for the growth of plants and human body but when present in excess, have an adverse effect on health and growth. For assessment of ground water quality, samples from 38 wells (shallow dug wells representing phreatic aquifer) have been collected during premonsoon. Similarly for Aquifer – II, the ground water quality data of 38 key wells have been collected. The details of shallow dug wells and key wells are given in **table-2.1** and **2.2** and water quality details of the key wells are attached in **annexure-III**.

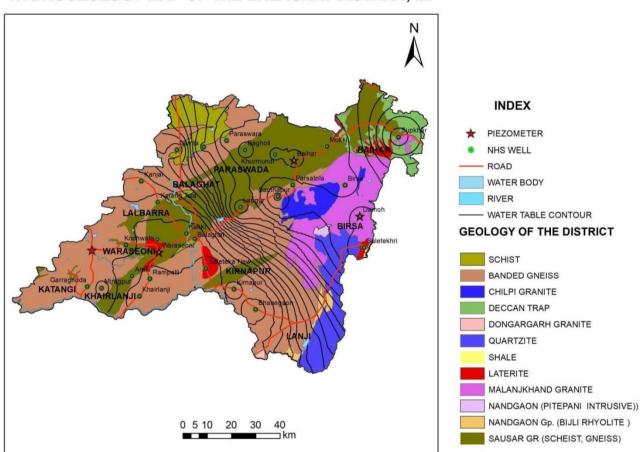
CHAPTER-3

III. DATA INTERPRETATION, INTEGRATION AND AQUIFER MAPPING

The data collected and generated on various parameters viz., water levels, water quality, exploration, aquifer parameters, hydrology, hydrometeorology, irrigation were integrated. Based on this the various aquifer characteristic maps on hydrogeology, aquifer wise water level scenario both current and long term scenarios, aquifer wise ground water quality, 2-D and 3-D sub surface disposition of aquifers by drawing fence and lithological sections, aquifer wise yield potential, aquifer wise resources, aquifer maps were generated and as discussed in details.

3.1 HYDROGEOLOGY

The occurrence and movement of ground water in hard rock areas is widely controlled by the secondary porosity present in them like joints, fractures, weathering etc. The district is mainly occupied by Precambrian rocks & alluvium. The weathering of Archean rocks ranges from 0.50 mbgl to 20.00 mbgl. The weaker zones in Deccan traps are also developed at the contacts of two consecutive lava flows, which facilitate downward movement of ground water. In Vesicular basalts the voids provide more space for the accumulation of ground water. The water bearing properties of these formations varied widely depending upon their lithological properties and structural control. The hydrogeological map of Balaghat district is shown in the fig-3.1.


3.2 WATER BEARING FORMATIONS

The Ground Water occurs under water table and semi confined to confined conditions in all formations of the area. Topographic depressions, nature and extent of weathering, presence of joints and fractures play an important role in the occurrence and movement of ground water. The area occupied by Archean rocks is mostly undulating. The ground water in these rocks occurs under unconfined conditions, which is widely controlled by the weathering of the rocks, presence of joints, fracture and lineament in them.

The area occupied by Deccan trappean rocks, where ground water occurs under phreatic conditions in the weaker zones of weathered, vesicular, fractured and jointed parts of the flows. The sheet joints, basal parts of flows and inter-connection of joints and fractures controls the horizontal as well as vertical movement of ground water. The plateau like topography plays an important role in occurrence and movement of ground water. Under semi-confined conditions the ground water occurs at the contacts of two flows and at the contact of trappean rocks with Archean basement.

3.3 HYDROGEOLOGICAL DATA COLLECTION

Groundwater is the principal source of irrigation in the district. Map (fig-3.1) showing geology, hydrogeology, water table and location of national hydrograph stations of Balaghat district.

HYDROGEOLOGY MAP OF THE BALAGHAT DISTRICT, MP

Fig-3.1: Hydrogeological Map of the Balaghat District

3.4 GROUND WATER LEVELS

The present depth to water level scenario of shallow aquifer was generated by utilizing water Level data of 36 monitoring wells representing shallow aquifer as well as deep aquifer.

3.4.1 Pre-monsoon Ground Water Level

A perusal of the pre-monsoon ground water (2021) reveals that in a major part of the district, the ground water levels are between 1.65-14.2 mbgl, in 77.77% area water level is between 3 & 19m **(fig-3.2** and **table-3.1)**. Deeper Ground water levels > 11 m bgl are found in parts of Baihar and Balaghat blocks. Shallower water levels of < 3 mbgl are found in Waraseoni & Kirnapur blocks.

Table-3.1: Premonsoon water level of 2021

	1 abie-3.1.	Premonsoon v	valer level of 2	2021	
DISTRICT_NAME	BLOCK_NAME	VILLAGE_NAME	SITE_NAME	DEPTH	WLS_WTR_LEVEL
BALAGHAT	WARASEONI	Newargaon	Newargaon	10.6	1.65
BALAGHAT	WARASEONI	Waraseoni	Waraseoni1	10.99	2.34
BALAGHAT	KIRNAPUR	Kirnapur	Kirnapur	11.3	2.7
BALAGHAT	BAIHAR	Parsatola	Parsatola	12	2.75
BALAGHAT	PARASWADA	Bagholi	Bagholi	8.5	2.88
BALAGHAT	BAIHAR	Jawaditula	Jawaditula	10	3
BALAGHAT	LALBARRA	Katang Tola	Katang Tola	9	3
BALAGHAT	WARASEONI	Kochwahi	Kochwahi	7.3	3.13
BALAGHAT	BIRSA	Damoh	Damoh2	11	3.3
BALAGHAT	WARASEONI	Amai	Amai	9.1	3.3
BALAGHAT	WARASEONI	Kanki	Kanki	11.7	3.5
BALAGHAT	KHAIRLANJI	Miragpur	Miragpur	11.02	3.7
BALAGHAT	KHAIRLANJI	Khairlanji	Khairlanji	9.1	3.9
BALAGHAT	BIRSA	Damoh	Damoh(S)	33.15	4.21
BALAGHAT	BIRSA	Saletekhri	Saletekhri	12.05	4.55
BALAGHAT	BAIHAR	Baihar	Baihar1	16.1	4.75
BALAGHAT	PARASWADA	Khurmundi	Khurmundi	10.9	4.75
BALAGHAT	BAIHAR	Supkhar	Supkhar	13.9	4.94
BALAGHAT	KHAIRLANJI	Garraghoda	Garraghoda	17.43	5.18
BALAGHAT	LALBARRA	Kanjai	Kanjai	10	5.2
BALAGHAT	PARASWADA	Rangpatbaba	Rangpatbab a	9	5.6
BALAGHAT	BIRSA	Birsa	Birsa	9.9	5.95
BALAGHAT	BAIHAR	Mukki	Mukki	9.5	6.82
BALAGHAT	BALAGHAT	Balaghat	Balaghat	11.2	6.9
BALAGHAT	KATANGI	Katedhara	Katedhara	8.5	7.5
BALAGHAT	KHAIRLANJI	Rampalli	Rampalli	9.66	7.5
BALAGHAT	BALAGHAT	Lamta	Lamta1	12.6	7.6
BALAGHAT	PARASWADA	Paraswara	Paraswara	9.35	7.65
BALAGHAT	KATANGI	Katangi-S	Katangi-S	20.94	8.1
BALAGHAT	BAIHAR	Samnapur	Samnapur	13.65	8.4
BALAGHAT	WARASEONI	Waraseoni	Warase- oni(S)	44.95	9.34
BALAGHAT	KIRNAPUR	Bhanegaon	Bhanegaon	14.5	9.4
BALAGHAT	BAIHAR	Baihar	Baihar(D)	58.2	9.89
BALAGHAT	BAIHAR	Laugur	Laugur	12	11
BALAGHAT	BALAGHAT	Saleteka New	Saleteka New	15.4	14.2

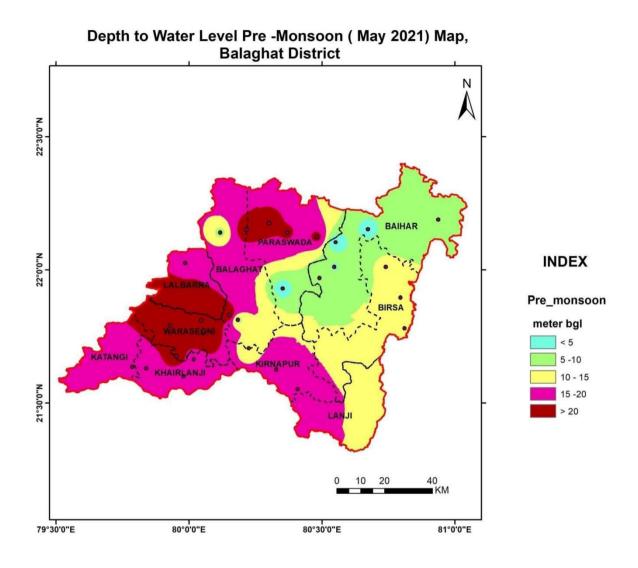


Fig-3.2: Pre-monsoon (May 2021) Depth to Water Level of Shallow Aquifer.

3.4.2 Post -monsoon Ground Water Level

During the post monsoon period (2021), ground water levels, in about 69% area of the district are between 2& 5 m bgl. Shallower water levels of 1-2m bgl are observed in parts of Baihar, Paraswada and Khairlanji Blocks. Deeper water levels of 9-13 m bgl are observed in isolated patch in Balaghat and Kirnapur Blocks (fig-3.3).

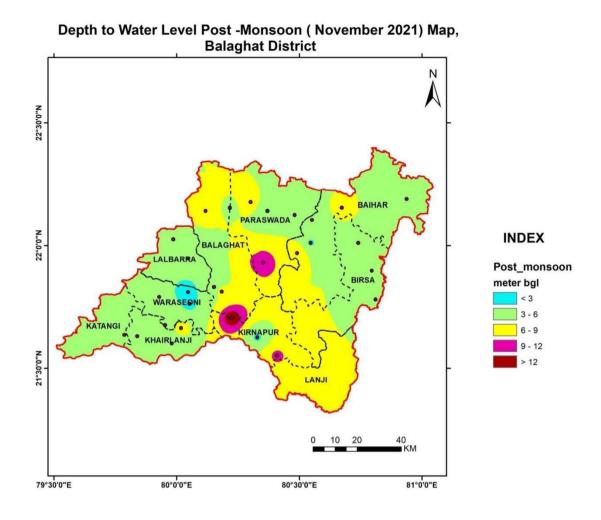


Fig-3.3: Post monsoon (November 2021) Depth to Water Level of Shallow Aquifer, Balaghat district, MP

3.4.3 Long Term Water Level Trend

The long term water level trend (pre monsoon 2012-2021) indicates that 68% wells showing a rising trend between 0.0304 & 0.3816 m/yr whereas 32% showing a decline of 0.1127 m. Hence the Ground Water development is very less in the district. The premonsoon and post-monsoon trend of the district is given in **annexure IV**.

3.4.4 Water level Fluctuation

The water level measured during pre and post monsoon period (2021) was used to compute the seasonal fluctuation. The analysis of water level fluctuation data indicated that minimum water level fluctuation was observed at Waraseoni (0.02m) while maximum water level fluctuation was observed at Lagur (6.77 m) (fig-3.4). The water level fluctuations were grouped under three categories i.e., less, moderate and high and the % of wells in each category was analyzed (**Table 3.2**).

Water Level Fluctuation Map 2021, Balaghat District

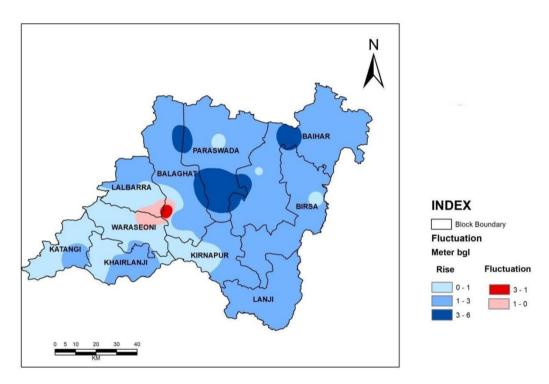


Fig-3.4: Water Level Fluctuation map of Balaghat district, MP Table-3.2: Analysis of Water Level Fluctuation.

S. No.	Category	Fluctuation Range	% of Wells
1.	Less water level fluctuation	0 to 2 m	48%
2.	Moderate water level fluctuation	2 to 5 m	45%
3.	High water level fluctuation	>5 m	7%

The analysis indicates that majority of the wells (48%) are falling in low fluctuation range indicating aquifer storage is not fluctuating much, whereas moderate water level fluctuation are observed in 45% wells and high water level fluctuation were observed in 7% wells. The seasonal fluctuation map is presented in **Fig. 3.4**.

3.5 GROUND WATER QUALITY

3.5.1 Hydro chemical scenario of Balaghat District

The water samples were collected from National Hydrograph Stations in clean double stoppered poly ethylene bottles from 38 different locations of Balaghat district during May 2020. The water quality details of Balaghat district is given in table-3.3.

3.5.2 Quality of Ground Water for Drinking Purpose:

The ground water samples from Balaghat district have varied range of pH from 6.71 to 7.85. As per BIS (IS 10500:2012) recommendation, all the water samples have pH recorded within the permissible limits of 6.5 to 8.5, the maximum pH recorded in the water sample of Khairlanji (7.85). The pH of ground water can be assessed as neutral to slightly alkaline innature. The electrical conductivity of ground water samples in Balaghat district varies from 285 to 1760 μ S/cm at 25°C. In the district, 28 locations of sample shows EC less than 1000 μ S/cm; 8 locations of sample shows EC in between 1000 to 1500 μ S/cm and 2 locations of sample shows EC more than 1500 μ S/cm from Newargaon (1500) and Miragpur (1760 μ S/cm) villages. So, overall ground water quality of Balaghat district is good to saline in nature in few pockets of the districts.

The fluoride concentration in Balaghat district lies in between 0.011 to 1.22 mg/l, which represent that all the samples are within the permissible limit i.e. 1.5 mg/l of BIS standard. The maximum concentration of fluoride has been observed in the dug well of Rangpatbaba village i.e. 1.22 mg/l. The nitrate concentration (fig-3.9) in the Balaghat districts ranges in between 3 to 165 mg/l. In the district, 26.3% samples have nitrate concentration more than the acceptable limit of 45 mg/l, while rest 73.7% samples have concentration less than acceptable limit. Highest concentration of nitrate has been recorded in the village of Miragpur (165 mg/l).

The total hardness in the ground water of the districts ranges between 95 to 695 mg/l. In the district, all the ground water samples recorded total hardness less than BIS permissible limit of 600 mg/l except the ground water of Miragpur village (695 mg/l) i.e. maximum concentration of total hardness.

Piper diagram (fig-3.6) has three parts: a Cation triangle, an Anion triangle, and a Central diamond shaped field. In Cation triangle, the relative percentages of the major cations (Ca^{2+} , Mg^{2+} , Na^{+} , K^{+}) are plotted. In Anion triangle the major anions ($HCO^{4+}CO^{2-}$, SO^{2-} , Cl^{-}) are plotted. These points are then projected to the central diamond shaped field.

In the district; piper diagram shows that the samples are Calcium-Bicarbonate type (temporary hardness); Mixed type and Calcium chloride type (permanent hardness) types of water. The electrical conductivity diagram is also shown in the fig-3.8.

3.5.3 Quality of Ground Water for Irrigation Purpose:

The classification of water for irrigation purpose, it is assumed that the water will be used for irrigation purpose based upon its soil texture, infiltration rate, drainage and climate. The chemical data of all the water samples from Balaghat district is plotted on U.S. Salinity Laboratory diagram (fig-3.7). and Piper Diagram (fig-3.6).

The USSL diagram shows that the districts falls under C_2 - S_1 Class (Medium Salinity & Low Sodium); C_3 - S_1 Class (High Salinity & Low Sodium). The ground water of the district may be used for irrigation with proper soil management.

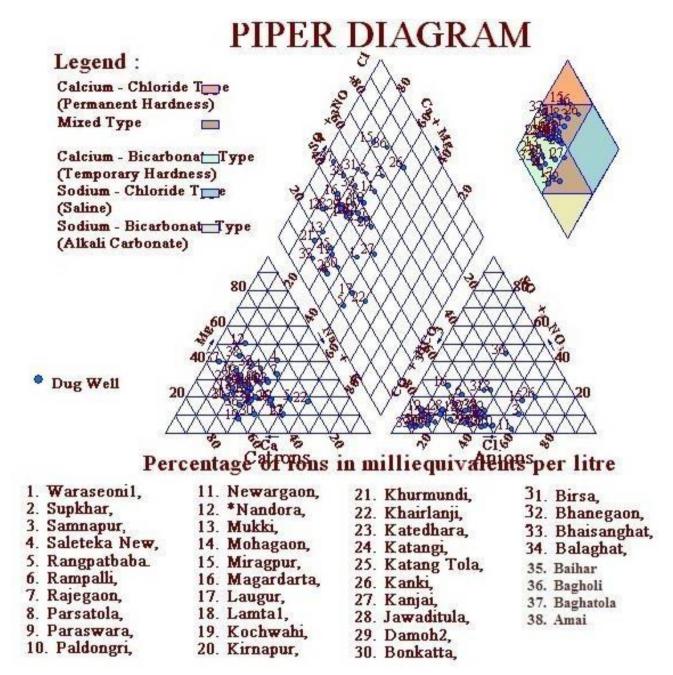


Fig3.6: Piper Diagram representing classification of water samples collected from National Hydrograph Stations, Balaghat District, Madhya Pradesh

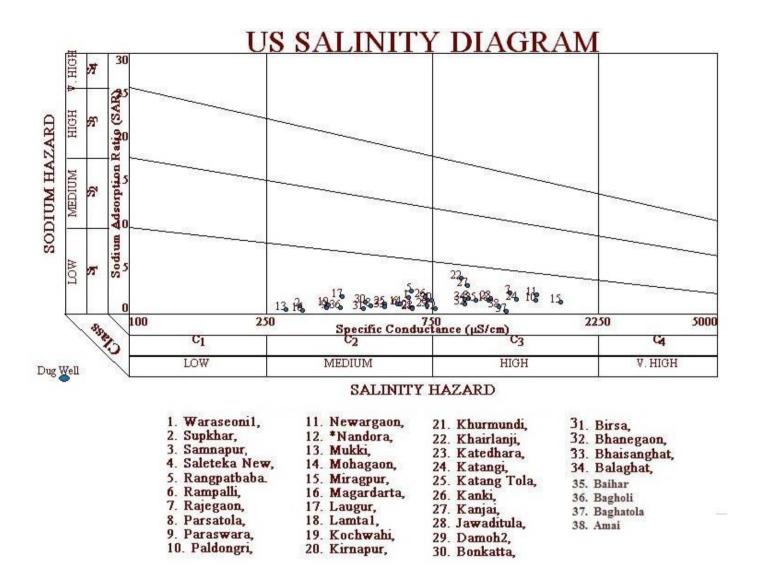


Fig-3.7: US Salinity Diagram for water samples collected from National Hydrograph Stations of Balaghat District, Madhya Pradesh

Table: 3.3 Chemical Quality of Ground Water for Shallow Aquifer

S. No.	District	Block	Location	Lat.	Long.	pН	EC	CO ₃	HCO ₃	Cl	SO ₄	NO ₃	F	PO ₄	SiO ₂	ТН	Ca	Mg	Na	K	TDS
140.						at 25°C	S/cmat 25°C							mg/l							
1	Balaghat	Waraseoni	Amai	21.676	79.952	7.46	1172	0	342	142	15	78	1.06	0.06	31	490	96	61	39	1	762
2	Balaghat	Lanji	Baghatola	21.398	80.627	7.53	1233	0	378	192	12	15	0.10	0.04		570	130	60	17	1	801
3	Balaghat	Paraswada	Bagholi	22.142	80.369	6.71	408	0	49	47	14	87	0.01	0.08	21	140	44	7	20	9	265
4	Balaghat	Baihar	Baihar1	22.104	80.551	7.35	1007	0	275	137	15	35	0.17	0.06	32	350	90	30	66	3	655
5	Balaghat	Balaghat	Balaghat	21.813	80.184	7.42	935	0	293	135	10	6	0.10	0.12	31	310	90	21	67	4	608
6	Balaghat	Baihar	Bhaisanghat	22.183	80.714	7.41	549	0	287	15	7	3	0.22	0.29	72	205	52	18	28	1	357
7	Balaghat	Kirnapur	Bhanegaon	21.551	80.408	7.37	932	0	250	122	18	44	0.13	0.07	40	350	70	43	49	1	606
8	Balaghat	Birsa	Birsa	22.011	80.740	7.34	478	0	116	55	14	50	0.13	0.28	63	185	56	11	20	2	311
9	Balaghat	Khairlanji	Bonkatta	21.606	79.763	7.37	482	0	226	27	8	4	0.34	0.43	19	145	48	6	38	5	313
10	Balaghat	Birsa	Damoh2	21.896	80.795	7.63	727	0	250	80	11	9	0.09	0.33		275	72	23	35	5	473
11	Balaghat	Baihar	Jawaditula	22.236	80.871	7.48	660	0	250	42	13	32	0.05	0.09		270	70	23	21	5	429
12	Balaghat	Lalbarra	Kanjai	22.026	79.986	7.36	953	0	323	100	17	49	0.64	0.12		225	70		111	4	619
13	Balaghat	Waraseoni	Kanki	21.832	80.152	7.09	720	0	79	150	12	70	0.08	0.06	25	205	56	16	65	5	468
14	Balaghat	Lalbarra	Katang Tola	21.948	80.047	7.63	550	0	244	27	14	9	0.40	0.07	28	190	52		35	1	358
15	Balaghat	Katangi	Katangi	21.771	79.803	7.36	1314	0	445	165	9	25	0.60	0.07		465	92		84	1	854
16	Balaghat	Katangi	Katedhara	21.714	79.797	7.54	1109	0	348	120	14	66	0.28	0.06		350	78		75	25	721
17	Balaghat	Khairlanji	Khairlanji	21.601	79.979	7.85	912	0	403	60	15	13	1.20	0.10	23	175	38		125	2	593
18	Balaghat	Paraswada	Khurmundi	22.125	80.481	7.66	658	0	323	30	9	5	0.07	0.39		260	78		25	5	428
19	Balaghat	Kirnapur	Kirnapur	21.626	80.329	7.31	749	0	232	105	12	25	0.11	0.08		210	56		51	36	487
20	Balaghat	Waraseoni	Kochwahi	21.790	79.929	7.41	378	0	171	12	20	3	0.18	0.05	45	125	44		26	1	246
21	Balaghat	Balaghat	Lamta1	22.142	80.125	7.43	1095	0	365	127	12	34	0.06	0.08		385	104	30	70	2	712
22	Balaghat	Baihar	Laugur	21.930	80.352	7.20	413	0	182	15	14	5	0.13	0.28	23	95	30	5	45	5	268
23	Balaghat	Balaghat	Magardarta	21.966		7.13	319	0	115	17	9	42	0.02	0.07	31	130	30		10	4	207
24	Balaghat	Khairlanji	Miragpur	21.631	79.839	7.15	1760	0	267	327	16	165	0.80	0.07		695	190	54	79	2	1144
25	Balaghat	Baihar	Mohagaon	22.052	80.681	7.41	608	0	213	55	5	38	0.24	0.06	43	215	54	19	36	3	395

26	Balaghat	Baihar	Mukki	22.154	80.672	7.33	285	0	122	15	2	10	0.06	0.17	38	110	26	11	11	4	185
27	Balaghat	Lanji	Nandora	21.515	80.618	7.58	770	0	322	52	9	38	0.03	0.07	10	325	54	46	24	1	501
28	Balaghat	Waraseoni	Newargaon	21.811	80.046	7.62	1500	0	352	300	14	5	0.56	0.06	38	485	106	54	109	15	975
29	Balaghat	Lanji	Paldongri	21.471	80.488	7.48	1495	0	419	247	22	7	0.31	1.24	24	495	116	50	78	57	972
30	Balaghat	Paraswada	Paraswara	22.176	80.301	7.44	374	0	128	30	8	26	0.25	0.17	35	140	40	10	18	1	243
31	Balaghat	Baihar	Parsatola	22.012	80.546	6.95	500	0	115	65	17	51	0.04	0.07	37	180	46	16	28	1	325
32	Balaghat	Kirnapur	Rajegaon	21.631	80.250	7.33	1263	0	389	167	13	66	0.16	0.05	40	385	72	50	109	1	821
33	Balaghat	Khairlanji	Rampalli	21.664	80.017	7.45	599	0	188	50	18	54	0.05	0.06	27	210	48	22	36	2	389
34	Balaghat	Paraswada	Rangpatba-ba	22.153	80.217	7.46	655	0	316	17	12	4	1.22	0.09	56	155	38	15	75	1	426
35	Balaghat	Balaghat	Saleteka new	21.705	80.225	7.61	730	0	371	27	7	6	0.20	0.06	43	235	36	35	56	2	475
36	Balaghat	Baihar	Samnapur	21.969	80.490	7.09	955	0	170	182	19	34	0.17	0.09	58	310	86	23	73	1	621
37	Balaghat	Baihar	Supkhar	22.189	80.937	7.45	313	0	146	10	3	3	0.09	0.07	26	100	30	6	21	2	203
38	Balaghat	Waraseoni	Waraseoni1	21.763	80.052	7.26	645	0	243	55	12	11	0.10	0.62	18	175	50	12	57	12	419

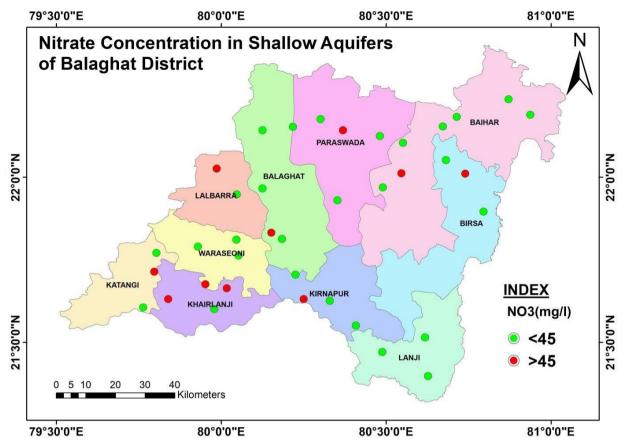


Fig-3.8: Electrical Conductivity of Aquifer-I (Shallow Aquifer).

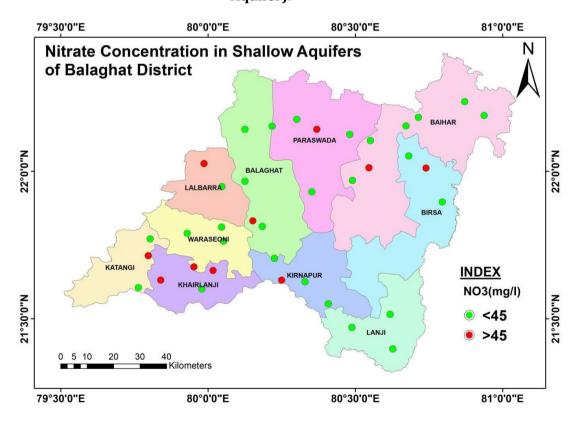


Fig-3.9: Nitrate of Aquifer-I (Shallow Aquifer)

3.6-3-D and 2-D Aquifer Disposition

The data generated from ground water monitoring wells, micro level hydrogeological inventories, exploratory and observation wells, various thematic layers was utilized to decipher the aquifer disposition of the area. This particularly includes the information on geometry of aquifers and hydrogeological information of these aquifers. In the area the two aquifer systems has been deciphered as listed below:

- a. Aquifer -I (Shallow Aquifer)
- b. Aquifer II (Deeper Aquifer)

3.6.1 Fence Diagram and 3D model

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 30m. The fractured /jointed Banded Gneiss and Schist form deep aquifer. The fence diagram indicating the disposition of various aquifers is presented in **Fig. 3.11** and 3-D representation is presented in **Fig. 3.10**. The disposition of Aquifer-I and Aquifer-II and other geological units can be observed in the Fence and 3D diagram.

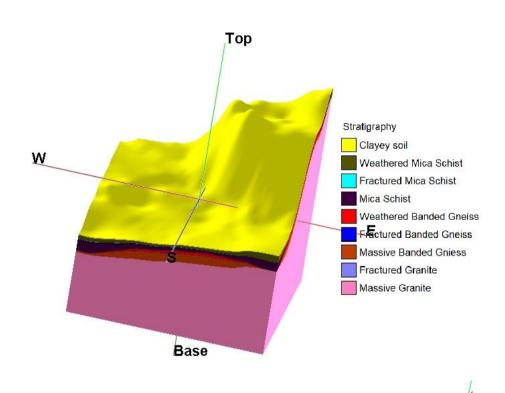
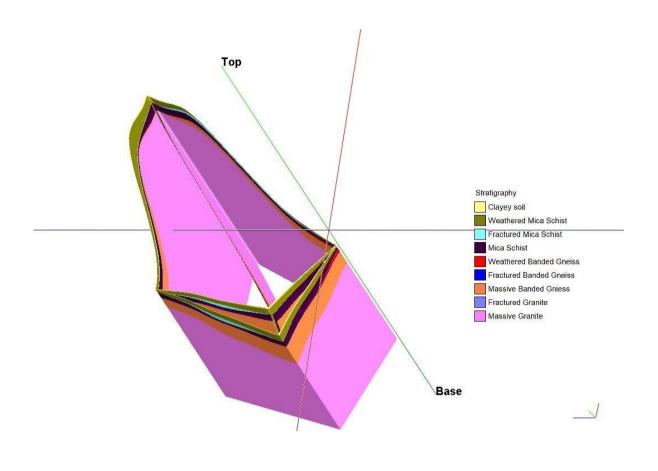



Fig.3.10: 3-D disposition of Aquifers.

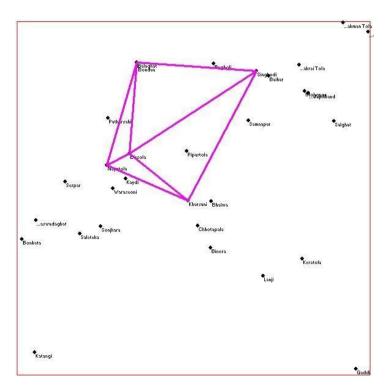
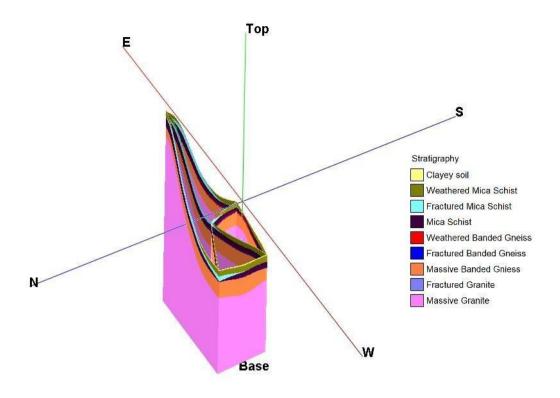



Fig:-3.11(b): Fence diagram of north Balaghat

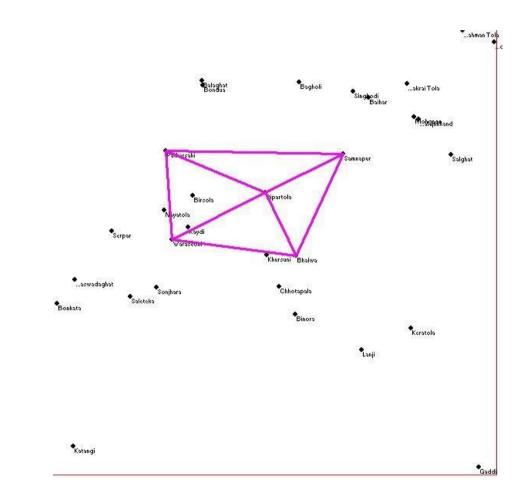


Fig-3.11(a): Fence diagram of Middle Balaghat

3.7 Hydrogeological Cross Sections

To study the aquifer disposition in detail, various hydrogeological cross section indicating aquifer geometry has been prepared viz. A-A' (fig-3.12) representing north west – North east direction and B-B' representing north – North East direction.

3.7.1 Hydrogeological Cross Section A-A'

Hydrogeological cross section A-A' (**Fig.3.12**) represents north west – North east direction and data of the wells i.e Bonkatta, Paraswadaghat, Serpar, Pathersahi and Balaghat has been utilised of Balaghat Block.

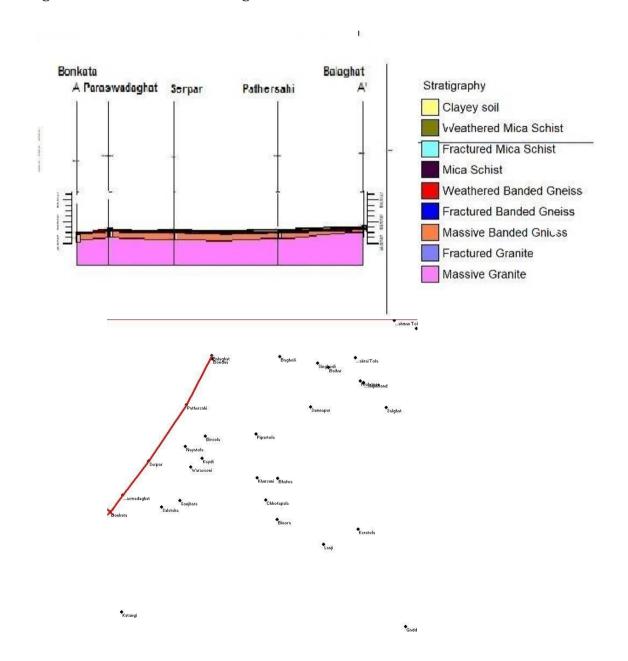


Fig. 3.12: Hydrogeological Cross Section A-A'.

3.7 Hydrogeological Cross Sections

To study the aquifer disposition in detail, various hydrogeological cross section indicating aquifer geometry has been prepared viz. B-B' (fig-3.13) representing north west – North east direction and B-B' representing north – North East direction.

3.7.1 Hydrogeological Cross Section B-B'

Hydrogeological cross section B-B' (**Fig.3.12**) represents north west – North east direction and data of the wells i.e Bonkatta, Paraswadaghat, Serpar, Pathersahi and Balaghat has been utilised of Balaghat Block.

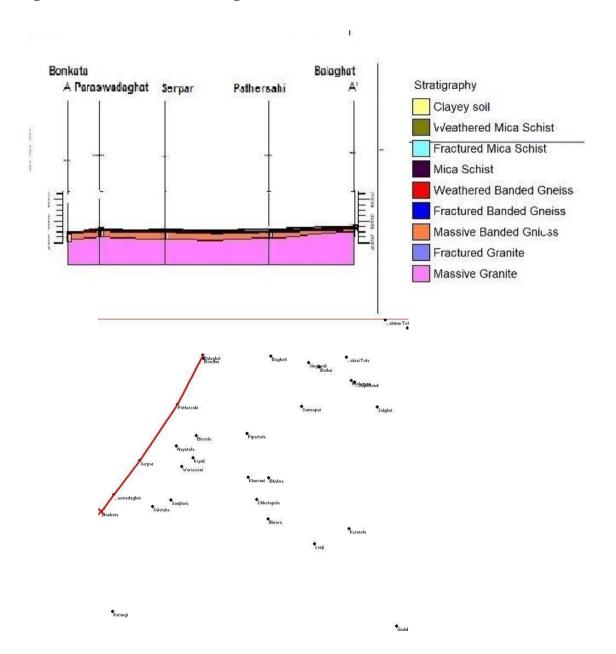


Fig. 3.13: Hydrogeological Cross Section B-B'.

3.8 Aquifer Parameters

The Ground Water occurs under water table and semi confined to confined conditions in all formations of the area. Topographic depressions, nature and extent of weathering, presence of joints and fractures play an important role in the occurrence and movement of ground water. The area occupied by Archean rocks is mostly undulating. The ground water in these rocks occurs under unconfined conditions, which is widely controlled by the weathering of the rocks, presence of joints, fracture and lineament in them.

The area occupied by Deccan trappean rocks, where ground water occurs under phreatic conditions in the weaker zones of weathered, vesicular, fractured and jointed parts of the flows. The sheet joints, basal parts of flows and inter-connection of joints and fractures controls the horizontal as well as vertical movement of ground water. The plateau like topography plays an important role in occurrence and movement of groundwater.

Under semi-confined conditions the ground water occurs at the contacts of two flows and at the contact of trappean rocks with Archean basement. Based on the ground water exploration and key well established in the Balaghat district, the following two types of aquifers can be demarcated and the details are given in **table-3.4.**

Table 3.4: Aquifer Parameters.

Major Aquifer	Alluvium & Frac	ctured Schist/Gneiss
Type of Aquifer	Aquifer-I	Aquifer-II
Formation	Weathered Schist/ Gneiss	Jointed / Fractured Gneiss/Schist
Depth of Occurrence (mbgl)	1 to 30	30 to 200
SWL (mbgl)	3-7	7-10
Weathered thickness (m)	2 -50	0.5 to 3
Fractures encountered (mbgl)	Upto 30	Upto 200
Yield	Upto 2 lps	Upto 4 lps
Suitability for drinking/irrigation	Suitable for both drinking and agriculture, except high Nitrate at places	Suitable for both drinking and agriculture, except high Nitrate and Fluoride at places

CHAPTER-4

IV. GROUND WATER RESOURCES

The ground water resources have been assessed for two types of aquifer existing in the area i.e., Aquifer-I and Aquifer-II. The details of the assessment are discussed below.

4.1 Ground Water Resources

The ground water resource assessment has been carried out for Balaghat district and the salient features of the resources are given in **Table 4.1, 4.2 and 4.3.**

As per **Table 4.1**, out of the total 922900 ha area, recharge worthy areas is 891793 ha, command areas is 101503 ha and non-command areas 790290 ha, whereas 31107 ha area is not worthy for recharge on account of its hilly nature.

Table 4.1: Ground Water Recharge worthy Areas for Resource Estimation (2020)

District	Predominant Formation	Total Geo- graphical	Hilly Area (ha)	Recharge worthy area	Ground Wate Worthy	
		Area (ha)		in ha	Command	Non-
					area (ha)	comman
						d
						area (ha)
Balaghat	Granitoid,	922900	31107	891793	101503	790290
	Banded					
	Gneiss,					
	Schist,					
	Decan Trap					

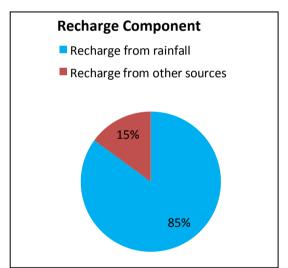
4.1.1 Recharge Component

During the monsoon season, the rainfall recharge is the main recharge parameter, which is estimated as the sum total of the change in storage and gross draft. The change in storage is computed by multiplying groundwater level fluctuation between pre and post monsoon periods with the area of assessment and specific yield. Monsoon recharge can be expressed as:-

 $R = h \times Sy \times A + DG$ Where,

h = rise in water level in the monsoon season, Sy = specific yield

A = area for computation of recharge, DG = gross ground water draft


The monsoon ground water recharge has two components- rainfall recharge and recharge from other sources. The other sources of groundwater recharge during monsoon season includeseepage from canals, surface water irrigation, tanks and ponds, ground water irrigation, and water conservation structures.

During the non-monsoon season, rainfall recharge is computed by using Rainfall Infiltration Factor (RIF) method. Recharge from other sources is then added to get total non-monsoon recharge.

The season wise assessment of recharge from various components such as rainfall and other sources was done and presented in **Table-4.2** and pie chart for Recharge component and histogram for Ground Water availability is shown in **fig-4.1**.

Table:-4.2 GW Recharge from various component (2020)

District	Recharge	Recharge	Recharge	Recharge	Total	Natural	Annual
	from rain-	from other	from rain-	from other	Annual	discharge	Extractable
	fall during	sources	fall during	sources	Ground		Ground
	monsoon	during	non-	during non-	Water		Water
	season	monsoon	monsoon	monsoon	Recharge		Resources
	(ham)	season	season	season (ham)	(ham)	(ham)	(ham)
		(ham)	(ham)				
Balaghat	81686.5	1957.93	290.51	2791.18	86726.12	8672.64	78053.48

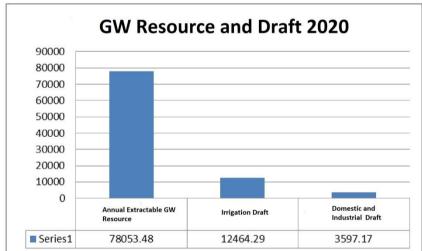


Fig.4.1: Recharge from various sources.

Table 4.3. The annual gross draft for all uses is estimated at 16061.44 ham with irrigation sector being the major consumer having a draft of 12464.29 ham and ground wateravailable for future use is 61699.41 ham. The stage of ground water extraction is 20.58% and hence all blocks come under safe category.

Table:-4.3 Dynamic Ground water Resource as on March 2020

Assessment Unit Name	Assessment Unit Type	Total Area of Assessment Unit (Ha)	Recharge Worthy Area(Ha)	Annual Extractable Ground Water Resource (Ham)	Ground Water Extraction for Irrigation Use(Ham)	Ground Water Extraction for Domestic and Industrial Use (Ham)	Total Extraction (Ham)	AnnualGW Allocation for Domestic Use as on 2025 (Ham)	Net Ground Water Availabilit y for future use (Ham)	Stage of Ground Water Extraction (%)	Categorization (Over- Exploited/ Critical/ Semi critical / Safe/ Saline)
PARASWADA	BLOCK	124050	116750	9616.31	108	265.53	373.53	287.13	9221.18	3.88	safe
LANGI	BLOCK	86826	85596	7131.95	1119.59	427.86	1547.45	462.67	5549.69	21.69	safe
KATANGI	BLOCK	69779	67679	7090.49	2723.37	407.66	3131.02	440.83	3926.3	44.15	safe
KIRNAPUR	BLOCK	81040	76240	6608.63	1573.2	432.34	2005.55	467.52	4567.91	30.34	safe
BAIHER	BLOCK	129160	127451	10284.68	171	261.22	432.23	282.48	9831.2	4.2	safe
LALBURRA	BLOCK	71592	70232	6125.3	1728.66	420.22	2148.89	454.41	3942.23	35.08	safe
KHAIRLANGI	BLOCK	48788	45388	3987.15	1734.33	361.84	2096.18	391.28	1861.53	52.57	safe
WARASEONI	BLOCK	47603	44403	4624.91	1484.24	252.69	1736.94	273.26	2867.41	37.55	safe
BALAGHAT	BLOCK	122219	121956	11381.76	1705.6	454.96	2160.55	491.97	9184.2	18.98	safe
BIRSA	BLOCK	141543	135798	11202.3	116.3	312.79	429.1	338.23	10747.76	3.83	safe

As a part of NAQUIM project 2020-21, groundwater resources of dynamic and static aquifers were calculated using water level fluctuation methods draft is calculated using unit draft method for each block in Balaghat district as given in the **tables 4.4-4.6** below.

Table: -4.4 In-storage Ground Water Resource of Shallow Aquifer in Balaghat district

		Baihar	Balaghat	Birsa	Kirnapur	Khairlanji	Lanji	Paraswada	Katangi	Lalbarra	Waraseoni
Recharge											
worthy Area	Sq km	1274.5	1219.56	1357.98	762.4	453.88	855.96	1167.5	676.79	702.32	444.03
Premonsoon											
(average)											
depth to											
water level	m	7.02	9.35	7.12	9.52	5.19	7.56	6.74	6.11	6.03	5.71
Av. depth of											
Dug well	m	12.48	12.44	10.94	11.92	11.28	12.04	9.42	8.14	9.56	10.44
0 10											
Specific											
yield(Sy)%	Fraction	0.008	0.008	0.008	0.008	0.002	0.0095	0.008	0.003	0.009	0.003
Saturated											
thickness of											
aquifer (ST)	m	5.46	3.08	3.82	2.4	6.08	4.48	2.68	2.03	3.52	4.72
Resource (A											
* Sy * ST)	MCM	55.69	30.12	41.51	14.6	5.59	36.48	25.05	4.14	22.31	6.30

 Table 4.5: In-storage Ground Water Resources of Deeper Aquifer in Balaghat district

		Baihar	Balaghat	Birsa	Katangi	Khairlanji	Kirnapur	Lalburra	Lanji	Paraswada	Waraseoni
Recharge worthy Area	Sq km	1274.51	1219.56	1358	6767.9	4538.8	7624	7023.2	8589.6	1167.5	4440.3
Thickness of fracture in deeper aquifer(2% of 170m)	m	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Specific yield(Sy)%	Fraction	0.008	0.008	0.008	0.003	0.002	0.008	0.009	0.0095	0.008	0.003
Resource (A * Sy * ST)	MCM	35.69	34.14	38.02	107.85	180.02	325.90	613.79	1119.73	2059.43	3792.96

Table 4.6: Ground water Resources of Balaghat district

	141	Jic Iioi u	I ound v	vater ne	our ces or	Dalagha	uistrict			
	Baihar	Balaghat	Birsa	Katangi	Khairlanji	Kirnapur	Lalburra	Lanji	Paraswada	Waraseoni
Shallow Aquifer										
Dynamic Resources (MCM)	102.85	113.82	112.02	70.90	40	66.08	61.25	71.31	96.16	46.24
In-storage Resources (MCM)	55.69	30.117	41.51	14.64	5.52	36.43	25.06	4.14	22.30	6.29
Total Resources (MCM)	158.54	143.93	153.53	85.54	45.39	102.52	86.31	75.46	118.46	52.54
Irrigation Draft	1.71	17.05	1.16	27.23	17	15.73	17.28	11.19	1.08	14.84
Domestic+Industries Draft	2.61	4.550	3.12	4.27	4	4.32	4.20	4.27	2.65	2.52
Total GW Draft (MCM)	4.32	21.60	4.29	31.51	20.96	20.05	21.48	15.47	3.73	17.36
Deeper Aquifer										
Static Resources (MCM)	35.69	34.14	38.02	107.85	180.02	325.90	613.79	1119.73	2059.43	3792.96
GW Draft (MCM	3.00	45.70	8.30	11.76	4.75	15.20	45.45	90.20	0.00	72.84
Total GW Resources (MCM)	194.23	178.08	191.56	193.40	225.42	428.43	700.11	1195.19	2177.90	3845.51
Gross Ground Water Draft (MCM)	7.32	67.30	12.59	43.27	25.71	35.25	66.93	105.67	3.73	90.20

CHAPTER-5 V. GROUND WATER RELATED ISSUES

In the district there are some Groundwater issues which are described both in quantity and quality wise as follows.

5.1 -Low Ground Water Potential / Limited Aquifer Thickness / Sustainability

The district is covered mostly with hard rock i.e. Schist and Banded Gneiss and Achaean Granitoid. These hard rocks don't have primary porosity and are impermeable. So they can form aquifers only when they are weathered, fractured and jointed. So the depth of weathering in shallow aquifer and aquifer thickness in deeper aquifers are limited. Sustainability of both the aquifers is limited.

5.2 Inferior Ground Water Quality

The maximum concentration of fluoride has been observed in the dug well of Rangpatbaba village i.e. 1.22 mg/l. The nitrate concentration in the Balaghat districts ranges in between 3 to 165 mg/l. In the district, 26.3% samples have nitrate concentration more thanthe acceptable limit of 45 mg/l, while rest 73.7% samples have concentration less than acceptable limit. Highest concentration of nitrate has been recorded in the village of Miragpur (165 mg/l).

The details about groundwater quality of both shallow and deep aquifers have been already discussed in **Chapter-3**.

CHAPTER-6

VI. GROUND WATER MANAGEMENT STRATEGIES

As discussed in previous chapter, there are some groundwater related issues owing to many socio-economic and hydrogeological reasons. The groundwater management plan for Balaghat district has been made keeping in view the area specific details and includes the strategies like enhancing the ground water draft through the construction of new bore wells and dug wells etc and proper study for tracing of the lineaments which are to be recharged artificially.

6.1. Ground Water Development plan

An Aquifer Management Plan for Balaghat district in the State has been prepared block wise for enhancing the ground water utilization in the district as the present stage of extraction is meagerly 21% only. Each plan discusses the broad framework of ground water situation in the block, status of water availability and exiting draft of the District. It is proposed to increase the overall Stage of Ground Water Extraction to about 59% in the district after suitable management interventions.

In Balaghat district, after 2020 water resource assessment all blocks are under safe category. Ten blocks i.e., Baihar, Balaghat, Birsa, Katangi, Khairlanji, Kirnapur, Lalburra, Lanji, Paraswada and Waraseoni blocks are having less than 60% stage of groundwater development. Adoption of suitable water abstraction structures in Baihar, Balaghat, Birsa, Katangi, Khairlanji, Kirnapur, Lalburra, Lanji, Paraswada and Waraseoni blocks will increase the draft and stage of groundwater extraction reached up to 59% (Table-6.1). Since the district is covered with hard rocks, the potential aquifer zones are very limited. However, the areas with higher intensity of lineaments as shown in figure (Fig-6.1) can be demarked for ground water extraction.

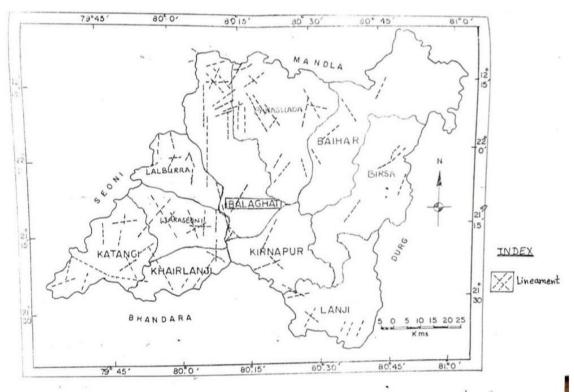


Fig. 6.1:- Lineaments of Balaghat district. (Source- District Geological Museum)

6.2 Solution for Fluoride Contamination in groundwater

As a part of the management strategies, solution for fluoride contamination is as given below.

- 1. Artificial recharge of wells contaminated with Fluoride and dilution: this is the most effective and simplest method for getting fluoride free water from deep bore wells. Due to shallow water levels and unavailability of subsurface storage, it is not possible to recharge the shallow aquifers. However, deep aquifers can be recharged through existing bore wells/hand pumps etc.
- 2. Lowering of well assembly **(Fig-6.2):** Another method for obtaining fluoride free water from affected wells is lowering of assembly for sealing the contaminated zone thereby tapping only the available fresh water zone above or below fluoride affected aquifer.
- 3. Chemical treatment known as Nalgonda technique in which contaminated water is mixed with alum, lime and bleaching powder.

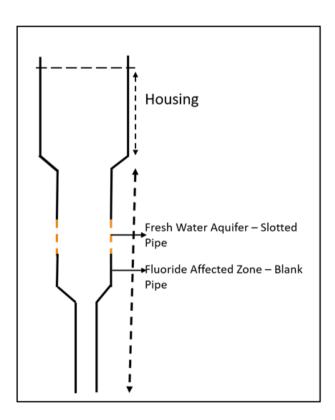


Fig.6.2: Well Assembly for fluoride contaminated well

Table 6.1:- Ground Water Management plan

Block	Annual Extractable GW	Gross Draft (MCM)	Stage of GW Extraction (%)	Additonal draft Proposed	Gross Draft(MCM)	Net Extractable GW resource after utilising	Stage of GW Extraction (%)after	Unit Draf monsoor	-	Proposed abstraction structures		
	resource (MCM)	(ivicivi)		(MCM)		additional draft(MCM)	intervention	Dugwell	Bore Well	Dug well	Bore well	
Baihar	102.85	4.32	4.20	34.97	39.29	67.88	57.88	0.25	0.1	49	52	
Balaghat	113.82	21.61	18.98	28.45	50.06	85.36	58.64	0.31	0.695	32	6	
Birsa	112.02	4.29	3.83	33.61	37.90	78.42	48.33	0.35	0.6	34	8	
Katangi	70.9	31.31	44.16	7.09	38.40	63.81	60.18	0.62	0.55	4	2	
Khairlanji	39.87	20.96	52.57	3.19	24.15	36.68	65.84	0.36	0.69	3	1	
Kirnapur	66.080	20.050	30.300	13.22	33.27	52.86	62.93	0.3	0.69	15	3	
Lalburra	61.250	21.480	35.080	9.19	30.67	52.06	58.91	0.62	0.59	5	2	
Lanji	71.310	15.470	21.700	17.83	33.30	53.48	62.26	0.36	0.79	17	3	
Paraswada	96.160	3.730	3.800	32.69	36.42	63.47	57.39	0.42	0.64	27	8	
Waraseoni	46.240	17.360	37.560	6.94	24.30	39.30	61.82	0.69	0.6	4	2	
Total	780.50	160.58	20.57	187.17	347.75	593.33	59.00	4.28	5.945	190	88	

PART-II: BLOCK WISE AQUIFER MANAGEMENT PLANS

1. AQUIFER MAPS AND MANAGEMENT PLAN OF BALAGHAT BLOCK

1. 1 SALIENT INFORMATION						
Block	BALAGHAT					
Area	·	Sq Km	1222.19			
Population (2011	(2011 CENSUS) 269352					
Normal Rain- fall(2017-20)		millimeter	1168.12			
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane			
	Gross cropped area		466.05			
Land use and	Net sown area	Sa Vm	290.90			
Agriculture	Area sown more than once	- Sq Km	175.15			
	Cropping intensity	%	160			
	Area under forest	C V	783.08			
	Area under Waste land	Sq Km	24.46			
Data Utilized	Monitoring Wells for Water Level		Dw-4, Pz-1			
Data Othized	Monitoring Wells for Quality		Dw-4			
	Pre-monsoon WL	meter	9.35			
	Post-monsoon WL]	6.59			
Water level	Pre-monsoon WL Trend		Rising 0.0732			
behavior	Post-monsoon WL Trend	(m /yr.)	Rising 0.767			

1.2 AQUIFER DISPO	1.2 AQUIFER DISPOSITION						
Major Aquifer	Banded Gneiss						
Type of Aquifer	Aquifer-I	Aquifer-II					
Formation	Weathered Gneiss	Jointed / Fractured Banded Gneiss					
Depth of	1 to 30	30 to 200					
Occurrence (mbgl)							
SWL (mbgl)	9.56	9.56					
Weathered thickness (m)	0.00-20.00	2.0-3.0					
Fractures encountered (mbgl)	Upto 30	Upto 200					
Yield (M ³ /day)	20-40	150-1123					
Transmissivity (m²/day)	-						

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 20 m. The fractured /jointed Banded Gneiss form the deeper aquifer.

1.3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES

ISSUES			
	Type of Rock formation	В	anded Gneiss
	Recharge worthy area		1357.98
	Command area	Sq Km	188.9
	Non-Command area		1030.66
	Recharge From Rain Fall		119.4225
	During Monsoon Season		119.4223
	Recharge From other sources During Monsoon Season		2.7582
	Recharge From Rain Fall During Non-Monsoon Season		0.4247
	Recharge From other sources During non- Monsoon Season		3.8586
	Total Recharge		126.464
DYNAMIC GROUNDWA-	Annual Extractable Groundwater Recharge		113.82
TER RE- SOURCES 2020	Existing Gross Ground Water Draft for Irrigation	MCM	17.056
	Existing Gross Ground Water Draft for Indus- trial Water Supply		0
	Existing Gross Ground Water Draft for Domes- tic Water Supply		4.550
	Existing Gross Ground Water Draft for All Uses		21.606
	Annual GW Allocation for Domestic Use ason 2025		4.9197
	Net Ground Water Availability for Future Development		91.842
	Stage of Ground Water Extraction	%	18.98
	Category		SAFE
Static Resource Of	Shallow Aquifer	MCM	30.117
Static Resource Of		MCM	34.148

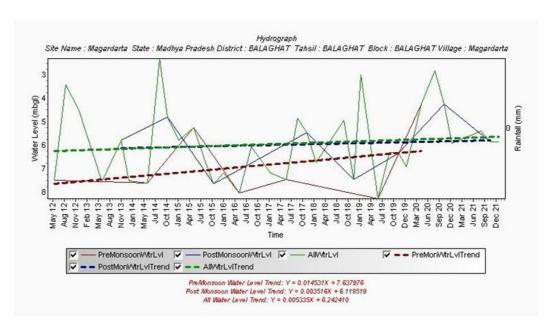


Fig.1.1: Hydrograph (2012-21), Village- Magardarta, Block- Balaghat District.

1.3.1 Ground Water Related Issues							
Low Ground Water Potential	As the block is covered with hard Banded Gneiss there is						
/ Limited Aquifer Thickness	restricted depth of weathering (< 20 m) in Aquifer-I and						
/	limited aquifer thickness in Aquifer-II. Sustainability of both						
Low Sustainability and High	the aquifers is limited.						
runoff							

Based on available datas the management plan of Balaghat district has been prepared which is given as follows in the table below-

Dist.	Annual Extractable GW	Gross Draft	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	Stage of GW Extraction	traction monsoon) (MCM		Proposed abstraction structures	
	resource (MCM)	(MCM)	(%)		ivicivij	additional dialitimetry)	(%)after intervention	Dugwell	Bore Well	Dug well	Bore well
Balagh at	113.82	21.61	18.98	28.45	50.06	85.36	58.64	0.31	0.695	32	6

2. AQUIFER MAPS AND MANAGEMENT PLAN OF BAIHAR BLOCK

2. 1 SALIENT INFORMATION						
Block	Baihar					
Area		Sq Km	1291.60			
Population (2011	CENSUS)		155718			
Normal Rain-		millimeter				
fall(2015-19)		iiiiiiiiietei	1168.12			
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane			
	Gross cropped area		339.15			
Land use and	Net sown area	C V	249.19			
Agriculture	Area sown more than once	- Sq Km	89.96			
	Cropping intensity %		136			
	Area under forest	C a. V.	841.31			
	Area under Waste land	Sq Km	90.66			
Data Utilizad	Monitoring Wells for Water Level		DW-9, Pz-2			
Data Utilized	Monitoring Wells for Quality		Dw-9			
	Pre-monsoon WL	meter	7.023			
	Post-monsoon WL		3.55			
Water level	Pre-monsoon WL Trend		Rising 0.25104			
behavior	Post-monsoon WL Trend	(m/yr)	Rising 0.04446			

2.2 AQUIFER DISI	2.2 AQUIFER DISPOSITION						
Major Aquifer	Mica Schist/	Banded Gneiss					
Type of Aquifer	Aquifer-I	Aquifer-II					
Formation	Weathered	Jointed / Fractured Schist					
	Schist/Gneiss	or Gneiss					
Depth of	1 to 30	30-200					
Occurrence							
(mbgl)							
SWL (mbgl)	5.95	9.89					
Weathered	0-25	2 -3					
thickness (m)							
Fractures	Upto 20	Upto 60					
encountered							
(mbgl)							
Yield	20-40	150-1123					
Transmissivity	-	_					
(m ² /day)							

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 25 m. The fractured /jointed Schist or Gneiss forms the deeper aquifer.

2.3 GROUND W	ATER RESOURCE, EXTRAC	TION, CONTAMINA	ATION AND OTHER ISSUES
	Type of Rock formation	Mica Sc	hist, Banded Gneiss
	Recharge worthy area		1274.51
	Command area	Sq Km	0
	Non-Command area		1274.91
	Recharge From Rain		
	Fall During Monsoon		112.4662
	Season		
	Recharge From other		
	sources During Mon-		0.6374
	soon Season		
	Recharge From Rain		
	Fall During Non-		0.40
	Monsoon Season		
	Recharge From other		
	sources During non-		0.7707
	Monsoon Season		
	Total Recharge		114.2743
	Annual Extractable		102.8468
DYNAMIC	Groundwater Recharge		102.0400
GROUNDWATER	Existing Gross Ground	MCM	
RESOURCES 2020	Water Draft for	MOM	1.71
	Irrigation		
	Existing Gross Ground		
	Water Draft for Indus-		0
	trial Water Supply		
	Existing Gross Ground		
	Water Draft for Domes-		2.61
	tic Water Supply		
	Existing Gross Ground		4.32
	Water Draft for All Uses		1.02
	Annual GW Allocation		
	for Domestic Use ason		2.8248
	2025		
	Net Ground Water		205:-
	Availability for Future		98.312
	Irrigation Development		
	Stage of Ground Water	%	4.20
	Extraction		
Charle Da Co	Challena American		Safe
Static Resource Of		MCM	55.69
Static Resource Of	Deep Aquiter		35.69

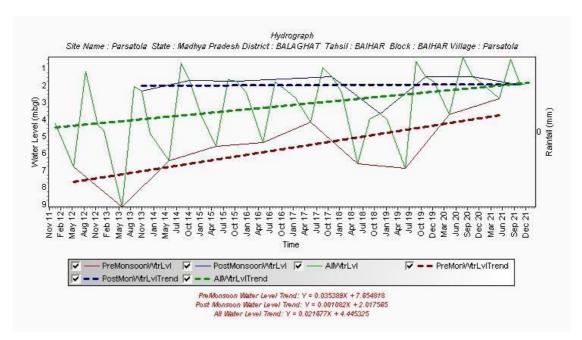


Fig. 2.1: Hydrograph (2011-21), Village- Parsatola, Block- Baihar, Balaghat District.

2.3.1 Ground Water Related Issues					
Low Ground Water Potential /	As the block is covered with Mica Schist and Banded Gneiss				
Limited Aquifer Thickness /	there is restricted depth of weathering (< 25 m) in Aquifer-I and				
Low Sustainability and High	limited aquifer thickness in Aquifer-II. Sustainability of both the				
runoff	Aquifers are limited.				

Based on available datas the management plan of Baihar district has been prepared which is given as follows in the table below

Block	Annual Extractable GW	Gross Draft	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	Stage of GW Extraction	Unit Draft (Non- monsoon) (MCM)		Proposed abstraction structures	
	resource (MCM)	(MCM)	(%)		ivicivij	additional dialitimetry)	(%)after intervention	Dugwell	Bore Well	Dug well	Bore well
Baihar	102.85	4.32	4.20	34.97	39.29	67.88	57.88	0.25	0.1	49	52

3.AQUIFER MAPS AND MANAGEMENT PLAN OF BIRSA BLOCK

3.1 SALIENT INFORMATION						
Block	Birsa					
Area		Sq Km	1415.43			
Population (2011	CENSUS)		128634			
Normal Rain- fall(2017-20		millimeter	1168.12			
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane			
Land use and	Gross cropped area		535.5			
Agriculture	Net sown area	Sq Km	459.85			
	Area sown more than once		75.65			
	Cropping intensity	%	1.16			
	Area under forest	C II	839.38			
	Area under Waste land	Sq Km	50.58			
Data Utilized	Monitoring Wells for Water Level		Dw-3, Pz-1			
	Monitoring Wells for Quality		Dw-3			
	Pre-monsoon WL	meter	7.12			
	Post-monsoon WL	incter	3.79			
	Pre-monsoon WL Trend		Falling- 0.09999			
Water level behavior			Rising- 0.01673			
	Post-monsoon WL Trend	(m/yr)				

3.2 AQUIFER DISPOSITION							
Major Aquifer	Alluviı	ım/Basalt					
Type of Aquifer	Aquifer-I	Aquifer-II					
Formation	Weathered Gneiss/ Granite	Jointed / Fractured Gneiss or					
		Granite					
Depth of Occurrence	1 to 30	30 to 200					
(mbgl)							
SWL (mbgl)	4.6	4.21					
Weathered thickness	2 to 20	0.50 to 3					
(m)							
Fractures encountered	Upto 30	Upto 200					
(mbgl)							
Yield	-						
Transmissivity (m²/day)	-						

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 20 m. The fractured /jointed Granite form the deeper aquifer.

3.3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES

ISSUES						
	Type of Rock formation	Granite				
DYNAMIC GROUNDWA- TER RE- SOURCES 2020	Recharge worthy area		1357.98			
	Command area	Sq Km	0			
	Non-Command area		1357.98			
	Recharge From Rain Fall During Monsoon Season		122.4336			
	Recharge From other sources During Monsoon Season		0.883			
	Recharge From Rain Fall During Non-Monsoon Season		0.4354			
	Recharge From other sources During non- Monsoon Season		0.718			
	Total Recharge		124.47			
	Annual Extractable Groundwater Recharge		112.023			
	Existing Gross Ground Water Draft for Irrigation	МСМ	1.163			
	Existing Gross Ground Water Draft for Industrial Water Supply		00			
	Existing Gross Ground Water Draft for Domes- tic Water Supply		3.128			
	Existing Gross Ground Water Draft for All Uses		4.291			
	Annual GW Allocation for Domestic Use ason 2025		3.3823			
	Net Ground Water Availability for Future Irrigation Development		107.4776			
	Stage of Ground Water Extraction	%	3.83			
	Category		SAFE			
Static Resource Of		MCM	41.514			
Static Resource Of	Deep Aquifer	IAICIAI	38.023			

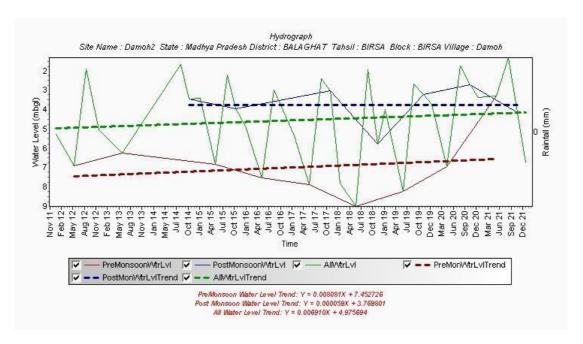


Fig.3.1: Hydrograph (2011-2021), Village-Damoh, Block-Birsa, Balaghat District.

3.3.1 Ground Water Related Issues	
Low Ground Water Potential	As the block is covered with alluvium and hard Malajhkhand Granite there is restricted depth of
/ Limited Aquifer Thickness	weathering (< 20 m) in Aquifer-I and limited aquifer thickness in Aquifer-
/	II. Sustainability of both the aquifers is limited.
Low Sustainability and Highrunoff	

Based on available datas the management plan of Birsa district has been prepared which is given as follows in the table below

Block	Annual Extractable GW	Gross Draft	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	Stage of GW Extraction (%)after intervention	Unit Draft (Non- monsoon) (MCM)		Proposed abstraction structures	
	resource (MCM)	(MCM)	(%)		IVICIVI	, ,		Dugwell	Bore Well	Dug well	Bore well
Birsa	112.02	4.29	3.83	33.61	37.90	78.42	48.33	0.35	0.6	34	8

4. AQUIFER MAPS AND MANAGEMENT PLAN OF KATANGI BLOCK

4. 1 SALIENT INFO	ORMATION		
Block	Katangi		
Area		Sq Km	697.79
Population (2011 (CENSUS)		181995
Normal Rain- fall(2016-20)		millimeter	1168.12
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane
	Gross cropped area		397.81
Land use and Agriculture	Net sown area	Ca V	287.4
	Area sown more than once	- Sq Km	110.41
	Cropping intensity	%	138
	Area under forest	C II	260.36
	Area under Waste land	Sq Km	20.78
Data Utilized	Monitoring Wells for Water Level		Dw-2, Pz-2
Data Utilizeu	Monitoring Wells for Quality		Dw-2
	Pre-monsoon WL	meter	6.015
	Post-monsoon WL		2.656
Water level	Pre-monsoon WL Trend		Fall -0.5896
behavior	Post-monsoon WL Trend	(m/yr)	Fall -0.250116

4.2 AQUIFER DISPOSI	4.2 AQUIFER DISPOSITION							
Major Aquifer	Schist/Gneiss							
Type of Aquifer	Aquifer-I	Aquifer-II						
Formation	Weathered Schist	Jointed / Fractured Schist or						
		Gneiss						
Depth of Occurrence	1 to 30	30-200						
(mbgl)								
SWL (mbgl)	7.5	8.1						
Weathered thickness	0-20	0.50 to 1						
(m)								
Fractures encountered (mbgl)	Upto 30	59-60						
Yield	-							
Transmissivity	-							
(m ² /day)								

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 20 m. The fractured /jointed Schist or Gneiss form the deeper aquifer.

4.3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES

ISSUES			
	Type of Rock formation	S	chist / Gneiss
	Recharge worthy area		676.79
	Command area	Sq Km	114.42
	Non-Command area		562.37
	Recharge From Rain Fall		69.917
	During Monsoon Season		07.717
	Recharge From other		
	sources During Monsoon		28.854
	Season		
	Recharge From Rain Fall		
	During Non-Monsoon		0.2486
	Season		
	Recharge From other		7.7000
	sources During non-		5.7323
	Monsoon Season		F0 F002
	Total Recharge		78.7833
DVMANAC	Annual Extractable		70.9049
DYNAMIC GROUNDWA-	Groundwater Recharge		
TER RE- SOURCES 2020	Existing Gross Ground Water Draft for	MCM	27 224
		IVICIVI	27.234
300KCE3 2020	Irrigation Existing Gross Ground		
	Water Draft for Indus-		0
	trial Water Supply		U
	Existing Gross Ground		
	Water Draft for Domestic		4.279
	Water Supply		
	Existing Gross Ground		31.512
	Water Draft for All Uses		31.312
	Annual GW Allocation for		
	Domestic Use as on		4.4083
	2025		
	Net Ground Water Avail-		
	ability for Future		39.263
	Irrigation Development		
	Stage of Ground Water Extraction	%	44.16
	Category		Safe
Static Resource O			14.641
Static Resource O		MCM	107.857

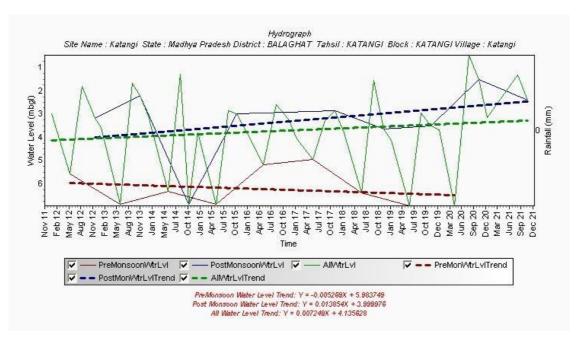


Fig.4.1: Hydrograph (2011-21), Village- Katangi, Block- Katangi, Balaghat District.

4.3.1 Ground Water Related Issues				
Low Ground Water	As the block is covered with hard Banded Gneiss or Schist there is restricted			
Potential / Limited	depth of weathering (< 20 m) in Aquifer-I and limited aquifer thickness in			
Aquifer Thickness /	Aquifer-II. Sustainability of both the aquifers is limited.			
Low Sustainability				
and High runoff				

Based on available datas the management plan of Katangi district has been prepared which is given as follows in the table below

Block	Annual Extractable GW	Gross Draft	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	010.00	Unit Draft (Non- monsoon) (MCM)		Proposed abstraction structures	
	resource (MCM)	(MCM)	(%)		ivicivi	additional distribution)		Dugwell	Bore Well	Dug well	Bore well
Katan gi	70.9	31.31	44.16	7.09	38.40	63.81	60.18	0.62	0.55	4	2

5. AQUIFER MAPPING AND MANAGEMENT PLAN OF KIRNAPUR BLOCK

5. 1 SALIENT INFORMATION						
Block	Kirnapur					
Area	·	Sq Km	810.40			
Population (2011 C	ENSUS)		175890			
Normal Rain- fall(2015-2019)		millimeter	1168.12			
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane			
Land use and	Gross cropped area		484.29			
Agriculture	Net sown area	Sq Km	305.6			
	Area sown more than once		178.69			
	Cropping intensity	%	158			
	Area under forest	C II	364.51			
	Area under Waste land	- Sq Km	24.35			
	Monitoring Wells for Water Level		Dw-3, Pz-0			
Data Utilised	Monitoring Wells for Quality		Dw-3			
	Pre-monsoon WL	meter	9.523			
	Post-monsoon WL		6.637			
Water level	Pre-monsoon WL Trend		Rising 0.0333			
behavior	Post-monsoon WL Trend	(m/yr)	Falling -0.53904			

5.2 AQUIFER DISPOSIT	5.2 AQUIFER DISPOSITION							
Major Aquifer	Basalt /Granitoids							
Type of Aquifer	Aquifer-I	Aquifer-II						
Formation	Weathered Schist or Gneiss	Jointed / Fractured Schist or Gneiss						
Depth of Occurrence (mbgl)	1 to 30	30-200						
SWL (mbgl)	6.05	6.05						
Weathered thickness (m)	0-15	0.50 to 1						
Fractures encountered (mbgl)	Upto 30	Upto 200						
Yield	-							
Transmissivity (m²/day)	-							

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 20 m. The fractured /jointed Gneiss form the deeper aquifer.

5.3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES				
	Type of Rock formation	4	Schist, Gneiss	
	Recharge worthy area		719.15	
	Command area	Sq Km	109.19	
	Non-Command area		609.96	
	Recharge From Rain Fall		6836.46	
	During Monsoon Season		0030.40	
	Recharge From other			
	sources During Monsoon		1.6561	
	Season			
	Recharge From Rain Fall			
	During Non-Monsoon		0.2431	
	Season			
	Recharge From other			
	sources During non-		3.1655	
	Monsoon Season			
	Total Recharge		73.4293	
_	Annual Extractable		66.0863	
DYNAMIC	Groundwater Recharge			
GROUNDWA-	Existing Gross Ground	MCM		
TER RE-	Water Draft for		15.732	
SOURCES 2020	Irrigation			
	Existing Gross Ground		0.0	
	Water Draft for Indus-		0.0	
	trial Water Supply			
	Existing Gross Ground Water Draft for Domestic		4.323476	
	Water Supply		4.323470	
	Existing Gross Ground			
	Water Draft for All Uses		20.0555	
	Annual GW Allocation for			
	Domestic Use as on		4.6752	
	2025		1.07.52	
	Net Ground Water Avail-			
	ability for Future		45.6791	
	Irrigation Development		-	
	Stage of Ground Water	0.4	20.25	
	Extraction	%	30.35	
	Category		Safe	
Static Resource O		MCM	36.439	
Static Resource O	Static Resource Of Deep Aquifer		325.909	

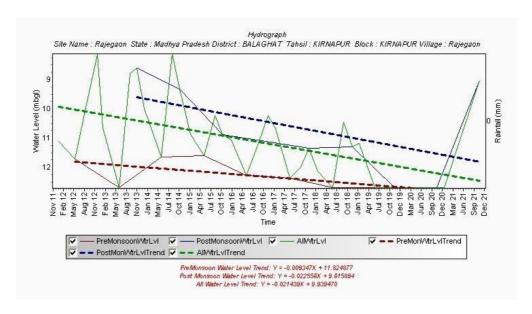


Fig.5.1: Hydrograph (2008-19), Village- Rajegaon, Block- Kirnapur, Barwani District.

5.3.1 Ground Water Related Issues					
Declining water level	Declining water level observed both in pre in some parts of the block(Fig.5.1)				
Low Ground Water Potential / Limited Aquifer Thickness / Low Sustainability and High run- off	As the block is covered with hard Banded Gneiss is restricted depth of weathering (< 20 m) in Aquifer-I and limited aquifer thickness in Aquifer-II. Sustainability of both the aquifers is limited.				

Based on available datas the management plan of Kirnapur district has been prepared which is given as follows in the table below

Block	Annual Extractable GW	Gross Draft (MCM)	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	Stage of GW Extraction (%)after intervention	Extraction	extraction monsoon) (N		Proposed abstraction structures	
	resource (MCM)	(IVICIVI)	(%)		,			Dugwell	Bore Well	Dug well	Bore well	
Kirna pur	66.080	20.050	30.300	13.22	33.27	52.86	62.93	0.3	0.69	15	3	

6. AQUIFER MAPS AND MANAGEMENT PLAN OF KHAIRLANJI BLOCK

6. 1 SALIENT INF	ORMATION		
Block	Khairlanji		
Area		Sq Km	487.88
Population (2011 (CENSUS)		147208
Normal Rain- fall(2017-21)		millimeter	1168.12
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane
Land use and	Gross cropped area		403.94
Agriculture	Net sown area	Sq Km	291.14
	Area sown more than once		112.8
	Cropping intensity	%	139
	Area under forest	Carly	72.93
	Area under Waste land	Sq Km	10.19
Data Utilised	Monitoring Wells for Water Level		Dw-5
Data Utiliseu	Monitoring Wells for Quality		Dw-5
	Pre-monsoon WL	meter	5.19
	Post-monsoon WL		3.35
Water level	Pre-monsoon WL Trend		Falling- 0.0024
behavior			
	Post-monsoon WL Trend	(m/yr)	Falling- 0.02937

6.2 AQUIFER DISPOSITI	6.2 AQUIFER DISPOSITION							
Major Aquifer	Basalt							
Type of Aquifer	Aquifer-I	Aquifer-II						
Formation	Weathered Schist/ Gneiss	Jointed / Fractured Gneiss						
Depth of Occurrence (mbgl)	0-20	20-200						
SWL (mbgl)	5.07	5.07						
Weathered thickness (m)	0-20	0.50 to 2						
Fractures encountered (mbgl)	Upto 30	Upto 200						
Yield	-							
Transmissivity (m²/day)	-							

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 12 m. The fractured /jointed Schist or Gneiss form the deeper aquifer.

6.3 GROUND V	6.3 GROUND WATER RESOURCE, EXTRACTION, CONTAMINATION AND OTHER ISSUES				
	Type of Rock formation		Schist, Gneiss		
	Recharge worthy area		453.88		
	Command area	Sq Km	136.58		
	Non-Command area		317.30		
	Recharge From Rain Fall During Monsoon Season		38.9968		
	Recharge From other sources During Monsoon Season		1.738		
	Recharge From Rain Fall During Non-Monsoon Season		13.87		
	Recharge From other sources During non- Monsoon Season	MCM	3.4281		
	Total Recharge		44.3016		
DYNAMIC	Annual Extractable Groundwater Recharge		39.8715		
GROUNDWA- TER RE- SOURCES 2020	Existing Gross Ground Water Draft for Irrigation		17.3433		
	Existing Gross Ground Water Draft for Indus- trial Water Supply		0.0		
	Existing Gross Ground Water Draft for Domestic Water Supply		3.618449		
	Existing Gross Ground Water Draft for All Uses		20.9618		
	Annual GW Allocation for Domestic Use ason 2025		3.9128		
	Net Ground Water Avail- ability for Future Irrigation Development		18.6153		
	Stage of Ground Water Extraction	%	52.57		
	Category		Safe		
Static Resource C	of Shallow Aquifer	MCM	5.528		
Static Resource C	of Deep Aquifer	MCM	180.029		

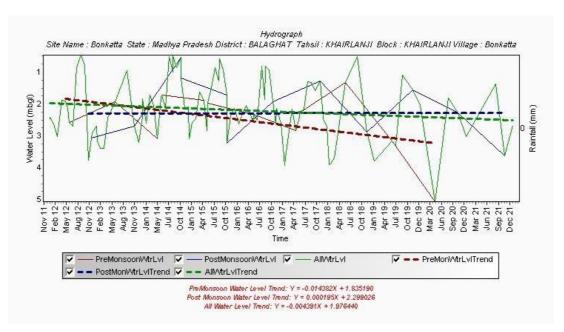


Fig. 6.1: Hydrograph (2011-21), Village-Bonkatta, Block-Khairlanji, Balaghat District.

6.3.1 Ground Water Related Issues				
Declining water level	Declining water level observed both in pre in some parts of the block(Fig.6.1)			
Low Ground Water Potential / Limited Aquifer Thickness / Low Sustainability and High run- off	As the block is covered with hard Banded Gneiss is restricted depth of weathering (< 20 m) in Aquifer-I and limited aquifer thickness in Aquifer-II. Sustainability of both the aquifers is limited.			

Based on available datas the management plan of Khairlanji district has been prepared which is given as follows in the table below

Block	Annual Extractable GW	Gross Draft	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	Stage of GW Extraction	Extraction monsoon) (MCN		Proposed abstraction structures	
	resource (MCM)	(MCM)	(%)		ivicivij	additional dialitiment	(%)after intervention	Dugwell	Bore Well	Dug well	Bore well
Khairl anji	39.87	20.96	52.57	3.19	24.15	36.68	65.84	0.36	0.69	3	1

7. AQUIFER MAPS AND MANAGEMENT PLAN OF LANJI BLOCK

7. 1 SALIENT INI	FORMATION	·ILIVI I LIZIV	or maji block
Block	Lanji		
Area	•	Sq Km	343
Population (2011	CENSUS)		187624
Normal Rain- fall(2017-21)		millimeter	1168.12
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane
Land use and	Gross cropped area		464.07
Agriculture	Net sown area	Sq Km	292.78
1.8	Area sown more than once		171.29
	Cropping intensity	%	159
	Area under forest	C II	482.99
	Area under Waste land	- Sq Km	17.61
Data Utilised	Monitoring Wells for Water Level		DW-1 PZ-1,
Data Utilised	Monitoring Wells for Quality		Dw-4
	Pre-monsoon WL	meter	4.5652
	Post-monsoon WL		4.465
Water level	Pre-monsoon WL Trend		Falling - 0.61426
behavior	Post-monsoon WL Trend	(m/yr)	Falling -1.208628

7.2 AQUIFER DISPOSITI	7.2 AQUIFER DISPOSITION						
Major Aquifer	Fractured Schist/ Fractured Gneiss						
Type of Aquifer	Aquifer-I	Aquifer-II					
Formation	Schist, Gneiss	Jointed / Fractured Banded Gneiss					
Depth of Occurrence (mbgl)	1 to 30	30-200					
SWL (mbgl)	7.56	7.63					
Weathered thickness (m)	0-25	0.5-1					
Fractures encountered (mbgl)	Upto 30	Upto 200					
Yield	-						
Transmissivity (m²/day)	-						

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 12 m. The fractured /jointed Schist or Gneiss form the deeper aquifer.

7.3 GROUND V	, , , , , , , , , , , , , , , , , , , ,				
	Type of Rock formation	Sc	chist or Gneiss		
	Recharge worthy area		787.47		
	Command area	Sq Km	92.75		
	Non-Command area		694.72		
	Recharge From Rain Fall		71.11		
	During Monsoon Season		/1.11		
	Recharge From other sources During Monsoon Season		5.53		
	Recharge From Rain Fall During Non-Monsoon Season		00		
	Recharge From other sources During non- Monsoon Season	МСМ	19.33		
	Total Recharge		95.99		
	Annual Extractable		86.81		
DYNAMIC	Groundwater Recharge		00.01		
GROUNDWATER RESOURCES 2020	Existing Gross Ground Water Draft for Irrigation		42.90		
2020	Existing Gross Ground Water Draft for Industrial Water Supply		0.0		
	Existing Gross Ground Water Draft for Domestic Water Supply		8.62		
	Existing Gross Ground Water Draft for All Uses		51.53		
	Annual GW Allocation for Domestic Use as on 2025		9.66		
	Net Ground Water Avail- ability for Future Irrigation Development		24.57		
	Stage of Ground Water Extraction	%	59.36		
	Category		Safe		
	f Shallow Aquifer	MCM	4.141		
Static Resource O	f Deep Aquifer	MCM	1119.733		

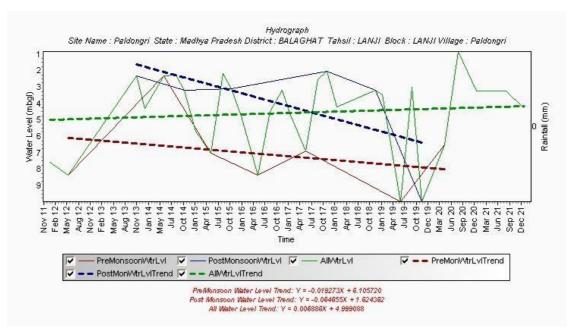


Fig.7.1: Hydrograph (2011-21), Village-Paldongri, Block-Lanji, Balaghat District.

7.3.1 Ground Water Related Issues				
Declining water level Declining water level observed both in pre and post-monsoon				
	major part of the block(Fig.7.1)			
Low Ground Water Potential /	As the block is covered with Schist or Gneiss is restricted depth of			
Limited Aquifer Thickness /	weathering (< 20 m) in Aquifer-I and limited aquifer thickness in			
Low Sustainability and High run-	Aquifer-II. Sustainability of both the aquifers is limited.			
off				

Based on available datas the management plan of Lanji district has been prepared which is given as follows in the table below

Block	Annual Extractable GW	Gross Draft	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	Stage of GW Extraction (%)after intervention	Unit Draft (N monsoon) (N		Proposed abs structures	traction
	resource (MCM)	(MCM)	(%)		ivicivij			Dugwell	Bore Well	Dug well	Bore well
Lanji	71.310	15.470	21.700	17.83	33.30	53.48	62.26	0.36	0.79	17	3

8. AQUIFER MAPS AND MANAGEMENT PLAN OF LALBURRA BLOCK

8. 1 SALIENT IN	FORMATION		
Block	Lalburra		
Area		Sq Km	343
Population (2011	CENSUS)		170960
Normal Rain- fall(2017-21)		millimeter	1168.12
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane
Land use and	Gross cropped area		428.46
Agriculture	Net sown area	Sq Km	279.00
	Area sown more than once		149.46
	Cropping intensity	%	154
	Area under forest	C - IZ -	293.80
	Area under Waste land	Sq Km	19.04
Data Utilized	Monitoring Wells for Water Level		DW-2
Data Offized	Monitoring Wells for Quality		Dw-2
	Pre-monsoon WL	meter	6.037
	Post-monsoon WL		2.7535
Water level	Pre-monsoon WL Trend		Rising 0.404148
behavior	Post-monsoon WL Trend	(m/yr)	Rising 0.147006

8.2 AQUIFER DISPOSITI	ON					
Major Aquifer	Schist or Gneiss					
Type of Aquifer	Aquifer-I	Aquifer-II				
Formation	Weathered Schist	Jointed / Fractured Gneiss				
Depth of Occurrence (mbgl)	1 to 30	30-200				
SWL (mbgl)	4.1	4.1				
Weathered thickness (m)	0-15	1-2				
Fractures encountered (mbgl)	Upto 30	Upto 200				
Yield	-					
Transmissivity (m²/day)	-					

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 30 m. The fractured /jointed Schist or Gneiss form the deeper aquifer.

8.3 GROUND V	VATER RESOURCE, EXTRAC	CTION, CONTAMINA	ATION AND OTHER ISSUES
	Type of Rock formation	Sc	hist or Gneiss
	Recharge worthy area		787.47
	Command area	Sq Km	92.75
	Non-Command area		694.72
	Recharge From Rain Fall		71.11
	During Monsoon Season		71.11
	Recharge From other		
	sources During Monsoon		5.53
	Season		
	Recharge From Rain Fall		
	During Non-Monsoon		00
	Season		
	Recharge From other		
	sources During non-		19.33
	Monsoon Season		
	Total Recharge		95.99
_	Annual Extractable		86.81
DYNAMIC	Groundwater Recharge		00.01
GROUNDWA-	Existing Gross Ground		
TER RE-	Water Draft for	MCM	42.90
SOURCES 2020	Irrigation		
	Existing Gross Ground		
	Water Draft for Indus-		0.0
	trial Water Supply		
	Existing Gross Ground		2.52
	Water Draft for Domestic		8.62
	Water Supply		
	Existing Gross Ground		51.53
	Water Draft for All Uses Annual GW Allocation for	_	
			9.66
	for Domestic Use as on 2025		9.00
	Net Ground Water Avail-		
	ability for Future		24.57
	Irrigation Development		4 7.37
	Stage of Ground Water		
	Extraction	%	59.36
	Category		Safe
Static Resource O	f Shallow Aquifer	MCM	25.065
Static Resource O	f Deep Aquifer	MCM	613.795

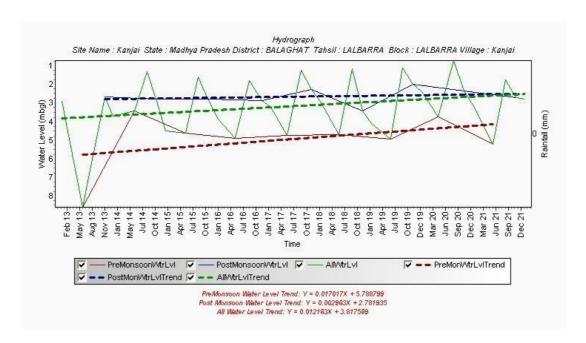


Fig. 8.1: Hydrograph (2013-21), Village-Kanjai, Block-Lalbarra, Balaghat District.

8.3.1 Ground Water Related Issues				
Low Ground Water Potential / Limited Aquifer Thickness / Low Sustainability and High run- off	As the block is covered with hard Schist or Gneiss is restricted depth of weathering (< 20 m) in Aquifer-I and limited aquifer thickness in Aquifer-II. Sustainability of both the aquifers is limited.			

Based on available datas the management plan of Lalburra district has been prepared which is given as follows in the table below

Block	Annual Extractable GW	Gross Draft	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	Stage of GW Extraction (%)after intervention	Unit Draft (Non- monsoon) (MCM)		Proposed abstraction structures	
	resource (MCM)	(MCM)	(%)		IVICIVI	additional dialitimetry)		Dugwell	Bore Well	Dug well	Bore well
Lalbur ra	61.250	21.480	35.080	9.19	30.67	52.06	58.91	0.62	0.59	5	2

9. AQUIFER MAPS AND MANAGEMENT PLAN OF PARASWADA BLOCK

9. 1 SALIENT INF	ORMATION		
Block	Paraswada		
Area		Sq Km	343
Population (2011 (CENSUS)		108026
Normal Rain- fall(2017-21)		millimeter	1168.12
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane
Land use and	Gross cropped area		360.73
Agriculture	Net sown area	Sq Km	279.86
8	Area sown more than once		80.87
	Cropping intensity	%	129
	Area under forest	C II	841.11
	Area under Waste land	Sq Km	68.45
Data Utilised	Monitoring Wells for Water Level		DW-4
Data Utiliseu	Monitoring Wells for Quality		Dw-4
	Pre-monsoon WL	meter	6.744
	Post-monsoon WL		2.854
Water level	Pre-monsoon WL Trend		Rising 0.1753
behavior	Post-monsoon WL Trend	(m/yr)	Rising 0.0539

9.2 AQUIFER DISPOSITION									
Major Aquifer	Mica Schist								
Type of Aquifer	Aquifer-I	Aquifer-II							
Formation	Weathered Mica Schist	Jointed / Fractured Mica Schist							
Depth of Occurrence (mbgl)	1 to 30	30-200							
SWL (mbgl)	5.22	5.22							
Weathered thickness (m)	0-50	0.2							
Fractures encountered (mbgl)	Upto 30	Upto 200							
Yield	-								
Transmissivity (m²/day)	<u>-</u>								

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of 30 m. The fractured /jointed Mica Schist form the deeper aquifer.

	ATED DESCRIBEE EVTDAG		
9.5 GROUND W	Type of Rock formation	TION, CONTAMI	NATION AND OTHER ISSUES Mica Schist
	Recharge worthy area		787.47
	Command area	Sq Km	92.75
	Non-Command area	Sq Kili	694.72
	Recharge From Rain Fall		
	During Monsoon Season		71.11
	Recharge From other sources During Monsoon Season		5.53
	Recharge From Rain Fall During Non-Monsoon Season		00
	Recharge From other sources During non- Monsoon Season		19.33
	Total Recharge		95.99
DYNAMIC	Annual Extractable Groundwater Recharge	МСМ	86.81
GROUNDWA- TER RE- SOURCES 2020	Existing Gross Ground Water Draft for Irrigation		42.90
	Existing Gross Ground Water Draft for Indus- trial Water Supply		0.0
	Existing Gross Ground Water Draft for Domestic Water Supply		8.62
	Existing Gross Ground Water Draft for All Uses		51.53
	Annual GW Allocation for Domestic Use as on 2025		9.66
	Net Ground Water Avail- ability for Future Irrigation Development		24.57
	Stage of Ground Water Extraction	%	59.36
	Category		Safe
Static Resource 0	f Shallow Aquifer	MCM	22.306
Static Resource O		IAICIAI	2059.438

Static Resource Of Deep Aquifer

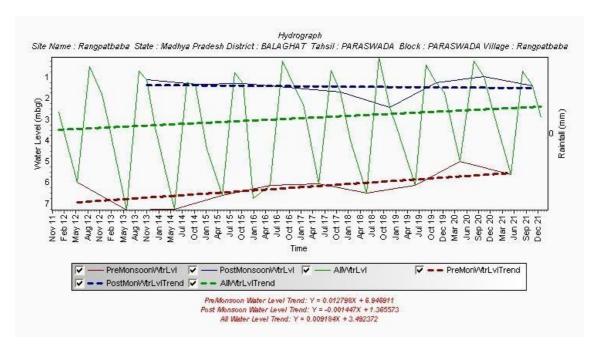


Fig. 9.1: Hydrograph (2011-21), Village-Rangpatbaba, Block-Paraswada, Balaghat District.

9.3.1 Ground Water Related Issues								
Low Ground Water Potential /	As the block is covered with hard Deccan trap bas Mica Schist is							
Limited Aquifer Thickness /	restricted depth of weathering (< 20 m) in Aquifer-I and limited							
Low Sustainability and High run-	aquifer thickness in Aquifer-II. Sustainability of both the aquifers is							
off	limited.							

Based on available datas the management plan of Paraswada district has been prepared which is given as follows in the table below

Block	Annual Extractable GW	Gross Draft	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	Stage of GW Extraction (%)after intervention	Unit Draft (Non- monsoon) (MCM)		Proposed abstraction structures	
	resource (MCM)	(MCM)	(%)		ivicivi			Dugwell	Bore Well	Dug well	Bore well
Paras wada	96.160	3.730	3.800	32.69	36.42	63.47	57.39	0.42	0.64	27	8

10.AQUIFER MAPS AND MANAGEMENT PLAN OF WARASEONI BLOCK

10. 1 SALIENT INF	ORMATION		
Block	Waraseoni		
Area		Sq Km	476.03
Population (2011	CENSUS)		176291
Normal Rain- fall(2017-21)		millimeter	1168.12
	Principal crops		Wheat, rice, vegetables, fruits, Cereals, Fibre, Pulses, Oil seeds, Sugarcane
Land use and	Gross cropped area		430.80
Agriculture	Net sown area	Sq Km	282.39
g	Area sown more than once]	148.41
	Cropping intensity	%	153
	Area under forest	C II	81.19
	Area under Waste land	- Sq Km	3.26
Data Utilised	Monitoring Wells for Water Level		DW-5, PZ-1
Data Utilised	Monitoring Wells for Quality		Dw-5
	Pre-monsoon WL	meter	5.71
	Post-monsoon WL		3.0
Water level	Pre-monsoon WL Trend		Rising 0.03226
behavior	Post-monsoon WL Trend	(m/yr)	Rising 0.002538

10.2 AQUIFER DISPOSITION								
Major Aquifer	Schist / Gneiss							
Type of Aquifer	Aquifer-I	Aquifer-II						
Formation	Weathered Schist	Jointed / Fractured Schist or						
		Gneiss						
Depth of Occurrence (mbgl)	1 to 30	30-200						
SWL (mbgl)	2.78	9.34						
Weathered / Fractured rocks thickness (m)	0-20	0.5-1						
1Fractures encountered (mbgl)	Upto 30	Upto 200						
Yield	-							
Transmissivity (m²/day)	-							

As the area is covered with hard rocks, the thickness of the aquifers is limited. The weathered formations generally form the shallow aquifer, which are extends maximum up to the depth of $20\,\mathrm{m}$. The fractured /jointed Schist and Gneiss form the deeper aquifer.

10.3 GROUND W	ATER RESOURCE, EXTRAC	CTION, CONTAMINA	TION AND OTHER ISSUES		
	Type of Rock formation	Mica S	Schist and Gneiss		
	Recharge worthy area		444.03		
	Command area	Sq Km	152.32		
	Non-Command area		291.71		
	Recharge From Rain Fall		45.8713		
	During Monsoon Season		43.0713		
	Recharge From other				
	sources During Monsoon		2.4494		
	Season	_			
	Recharge From Rain Fall		0.1.622		
	During Non-Monsoon Season		0.1632		
	Recharge From other	-			
	sources During non-		2.904		
	Monsoon Season		2.704		
	Total Recharge		51.3879		
	Annual Extractable				
DYNAMIC	Groundwater Recharge		46.2491		
GROUNDWATER	Existing Gross Ground				
RESOURCES	Water Draft for	MCM	14.8424		
2020	Irrigation				
	Existing Gross Ground				
	Water Draft for Indus-		0		
	trial Water Supply	_			
	Existing Gross Ground		2.526007		
	Water Draft for Domestic		2.526997		
	Water Supply Existing Gross Ground	_			
	Water Draft for All Uses		17.3694		
	Annual GW Allocation	_			
	for Domestic Use ason		2.7326		
	2025		2.7 0 2 0		
	Net Ground Water Avail-				
	ability for Future		28.6741		
	Irrigation Development				
	Stage of Ground Water	%	37.56		
	Extraction	70			
	Category		Safe		
	f Shallow Aquifer	MCM	6.299		
Static Resource 0	f Deep Aquifer	1.101.1	3792.966		

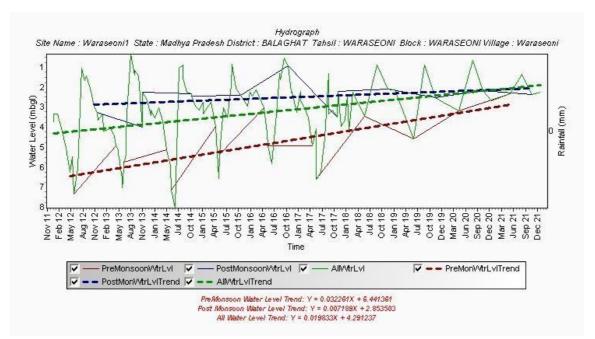


Fig.10.1: Hydrograph (2011-21), Village-Waraseoni, Block-Waraseoni, Balaghat District.

1.3.1 Ground Water Related Issues									
Low Ground Water Potential /	As the block is covered with hard Banded Gneiss basalt is restricted								
Limited Aquifer Thickness /	depth of weathering (< 20 m) in Aquifer-I and limited aquifer								
Low Sustainability and High run-	thickness in Aquifer-II. Sustainability of both the aquifers is limited.								
off									

Based on available datas the management plan of Waraseoni district has been prepared which is given as follows in the table below-

Block	Annual Extractable GW	Gross Draft	Stage of GW Extraction	Additonal draft Proposed (MCM)	Gross Draft(MCM)	Net Extractable GW resource after utilising additional draft(MCM)	Stage of GW Extraction (%)after intervention	Unit Draft (Non- monsoon) (MCM)		Proposed abstraction structures	
	resource (MCM)	(MCM)	(%)		iviciviy			Dugwell	Bore Well	Dug well	Bore well
Waras eoni	46.240	17.360	37.560	6.94	24.30	39.30	61.82	0.69	0.6	4	2

CONCLUSION & RECOMMENDATIONS

- A thorough study was carried out based on data gap analysis, data generated inhouse; data acquired from State Govt. departments and GIS maps prepared for various themes. All the available data was brought on GIS platform and an integrated approach was adopted for preparation of aquifer maps and aquifer management plans of Balaghat district.
- The study area is spanning over 9229 sq.km, out of which 311.07 sq.km is hilly area and area suitable for recharge is 8917.9 sq.km.
- The entire district is drained by Wein Ganga River and its tributaries as well as the tributaries of Narmada river. Thus the area falls in the Wein Ganga Basin and Narmada basin. The tributaries are Bagh, Banjar, Shisire, Sod and Tumnar.
- The pre-monsoon depth to water levels during May 2021 ranged between 1.65 to 16.59 mbgl and the post-monsoon depth to water levels during Nov. 2021 ranged between 1.18 to 13.29 mbgl.
- Electrical conductivity of ground water ranged between 285 to 1760 μ S/cm at 25°C, pH ranged in between 6.71 to 7.85, fluoride concentration is within permissible limit. Nitrate concentration ranged in between 3 to 165mg/l. Total hardness ranged in between 95 to 695 mg/l.
- During monsoon season recharge from rainfall contributes maximum component (81686.5 ham) and recharge from other sources is 1957.93 ham, whereas during non-monsoon season, recharge from rainfall is 2791.18 ham and the re-charge from other sources is 8672.612 ham.
- The net dynamic ground water resource available is 78053.48 ham. The annual
 gross draft for all uses is estimated as 16061 ham with irrigation sector being the
 major consumer having a draft of 12464ham, resulting the stage of ground water
 development to be 20.50 % as a whole for district. The Balaghat district falls
 under safe category.
- The Block constitute 10 blocks and all are fall under safe category with stage of GW Extraction as follows: (Baihar-4.2%), (Balaghat-18.98%), (Birsa-3.83%), (Katangi-44.16%), (Khairlanji-52.57%), (Kirnapur-30.35%), (Lalbarra-35.080), (Lanji-21.7) (Paraswada-3.88), (Waraseoni-37.56) and overall Balaghat district comes under safe category with very low stage of GW Extraction (20.5%).
- As per the Management plan prepared under NAQUIM of all the Block of Balaghat District, it is proposed to enhance the Stage of Ground Water Extraction for all the blocks upto around 60%. Accordingly, it is suggested that to increase the GW draft by harnessing about 30% of Extractable Ground Water Resources in Birsa block, 25% increase in Balaghat and Lanji Blocks, 15% increase in Waraseoni and Lalburra, 10% in Katangi block and 8% in Khairlanji block of net GW available (780.5348 mcm) i.e. created additional irrigated area by GW of 667.90 Sq. km and the stage of GW Extraction of Balaghat district after increase in draft will be estimated about 58.63% and of block (Baihar-57.9%), (Birsa-48.3%), (Katangi-60.2%), (Khairlanji-65.8%), (Kirnapur-62.9%), (Lalbarra-58.9), (Lanji-62.2),(Paraswada-57.4), (Waraseoni-61.8).

- Since data gap is prevailed in Balaghat district, it is recommended to construct new Exploratory wells throughout the district for better understanding the Hydrogeological scenario of the area and for better implementation of the management plan.
- Defluoridation techniques like NalaGonda method, membrane filtration, Ion exchange technique, activated alumina technique may be adopted in fluoride contaminated area of the district. In addition to this while constructing deeper wells, the zone with Fluoride contamination should be sealed and Fluoride free zones to be taken into use.

ACKNOWLEDGEMENTS

I would like to take an opportunity to thank **Shri Rana Chatterjee**, **Regional Director**, CGWB, NCR, Bhopal for providing opportunity to carry out this NAQUIM study.

I would like to take an opportunity to thank **Shri Padam Kumar Jain, Former Regional Director & Member (South) (I/C),** CGWB for providing the necessary facilities to complete the NAQUIM study report.

I am very much delighted to express my deep sense of gratitude and regards to my respected **Smt. Rose Anita Kujur, Sc.E,** CGWB, NCR, Bhopal for his valuable and meticulous guidance during the study and scrutiny of the report.

I thankfully acknowledge the sincere and timely efforts made by **Sh. Kamlesh Birla**, **(YP)** for the preparation of the maps of this report.

I am also grateful to State Departments, Madhya Pradesh for providing the necessary data without which the compilation of this report would not have been possible.

I am thankful to all the officers and officials of CGWB, NCR, Bhopal for help and co-operation supported in completing the study.

Annexure-I (Details of Existed wells and key wells)

						Weathering
Block	Locations	Long	Lat	RL	Depth	thickness
Baihar	Baihar	80.5513889	22.10417	555	54.9	
Baihar	Samnapur	80.486118	21.9702	626.8	83	20
Baihar	Sakrai Tola	80.65059	22.1372	552.3	100	10
Baihar	Jobati Tola	80.872599	22.2369	677.2	50	10
Baihar	Brahman Tola	80.792396	22.2643	651.7	70	20
Baihar	Gaddi	80.8336111	21.225	342	54.9	35
Balaghat	Khursuni	80.293584	21.7276	311	65	20
Balaghat	Pipartola	80.288367	21.8771	324	85	80
Balaghat	Bondua	80.127259	22.1318	348.4	65	20
Balaghat	Balaghat	80.125	22.14167	358	54.55	15.4
Birasa	Mohgaon	80.66772	22.0575	592	60	20
Birasa	Salghat	80.761732	21.9679	590.2	60	30
Birasa	malajhkhand	80.6805556	22.05194	574	30.32	14.6
Katangi	Bonkata	79.759058	21.61	296.3	110	30
Katangi	Katangi	79.8033333	21.27083	263	59.82	25
Khairlanji	Sonjhara	80.01302	21.6496	286.9	85	33
Khairlanji	Saleteka	79.947086	21.6268	294.9	100	30
Khairlanji	Paraswadaghat	79.80452	21.6663	339.5	150	20
Kirnapur	Bhalwa	80.368649	21.7277	306.3	100	30
Kirnapur	Chhotapala	80.32559	21.6529	303.3	83	30
Kirnapur	Binora	80.36673	21.5874	296.8	100	28
Lalbarra	Nayatola	80.031068	21.8343	311.9	120	35
Lalbarra	Pathersahi	80.03505	21.9746	334.4	100	20
Lalbarra	Birsola	80.10475	21.869	317.3	100	30
Lanji	Keratola	80.66111	21.555	330.7	105	30
Lanji	Khandwa	80.611599	21.5355	329.8	116	35
Lanji	Lanji	80.5361111	21.50417	318	60.16	10
Paraswada	Chiklaghodi	80.401903	21.9561	618.5	80	30
Paraswada	Singhodi	80.511533	22.1188	553	130	30
Paraswada	Bagholi	80.373589	22.1399	601.8	50	50
Waraseoni	Kaydi	80.09305	21.793	322.7	100	25
Waraseoni	Kabuliwara	80.010871	21.7205	296.7	65	30
Waraseoni	Serpar	79.89732	21.7829	330.2	180	20
Waraseoni	Waraseoni	80.0519444	21.76333	310	36.5	30

ANNEXURE-II (Pre-monsoon and Post -Monsoon Water level datas)

S No	Block	Village	Pre- Monsoon (mbgl)	Post- Monsoon (mbgl)	Seasonal Fluctuation (m)	
1	BAIHAR	Baihar	9.89	5.7	4.19	
2	BAIHAR	Baihar	4.75	2.94	1.81	
3	BAIHAR	Jawaditula	3	1.23	1.77	
4	BAIHAR	Laugur	11	4.23	6.77	
5	BAIHAR	Mukki	6.82	3.04	3.78	
6	BAIHAR	Parsatola	2.75	1.97	0.78	
7	BAIHAR	Samnapur	8.4	4.74	3.66	
8	BAIHAR	Supkhar	4.94	2.78	2.16	
9	BALAGHAT	Balaghat	6.9	3.92	2.98	
10	BALAGHAT	Lamta	7.6	5.32	2.28	
11	BALAGHAT	Saleteka New	14.2	13.29	0.91	
12	BIRSA	Birsa	5.95	3.33	2.62	
13	BIRSA	Damoh	4.21	2.74	1.47	
15	BIRSA	Saletekhri	4.55	3.37	1.18	
16	KATANGI	Katangi-S	8.1	3.75	4.35	
17	KATANGI	Katedhara	7.5	3.7	3.8	
18	KHAIRLANJI	Garraghoda	5.18	3.79	1.39	
19	KHAIRLANJI	Khairlanji	3.9	1.75	2.15	
20	KHAIRLANJI	Miragpur	3.7	3.22	0.48	
21	KHAIRLANJI	Rampalli	7.5	5.33	2.17	
22	KIRNAPUR	Bhanegaon	9.4	7.53	1.87	
23	KIRNAPUR	Kirnapur	2.7	2.17	0.53	
24	LALBARRA	Kanjai	5.2	2.69	2.51	
25	LALBARRA	Katang Tola	3	2.01	0.99	
26	PARASWADA	Bagholi	2.88	2.53	0.35	
27	PARASWADA	Khurmundi	4.75	2.553	2.2	
28	PARASWADA	Paraswara	7.65	5.44	2.21	
29	PARASWADA	Rangpatbaba	5.6	1.39	4.21	
30	WARASEONI	Amai	3.3	2.46	0.84	
32	WARASEONI	Kochwahi	3.13	2.14	0.99	
34	WARASEONI	Waraseoni	9.34	5.14	4.2	

ANNEXURE-III (Water Quality details)

	Pa	arameters	S		pН	EC	HCO_3	Cl	\mathbf{SO}_4	NO_3	F	\mathbf{PO}_4	SiO ₂	ТН	Ca	Mg	Na	K	TDS
S. No.	Location	Source	Lat.	Long.	at 25°C	μS/cm at 25°C					ı								
1	Linga	HP	21.7799	80.2539	7.51	1935	671	262	20	98	0.21	BDL	23	600	110	79	205	3.7	1258
2	Khursuni	DW	21.7276	80.2936	6.72	246	49	22	25	11	0.05	0.1	25	55	16	4	25	1.2	160
3	Bhalwa	HP	21.7277	80.3686	7.24	974	311	120	15	41	0.06	BDL	32	335	94	24	65	1.2	633
4	Chhotapala	HP	21.6529	80.3256	7.68	451	159	45	10	16	0.19	0.2	43	180	50	13	18	2.1	293
5	Binora	DW	21.5874	80.3667	7.64	712	366	22	8	10	0.18	BDL	22	210	70	9	65	1.1	463
6	Benegaon	Bore	21.5338	80.4457	7.94	640	305	35	5	8	0.11	0	27	245	68	18	32	1.9	416
7	Lohara	Bore	21.4500	80.5384	7.85	737	366	45	8	9	0.26	BDL	32	230	60	19	70	2.3	479
8	Keratola	HP	21.5550	80.6611	7.65	384	201	10	5	4	0.24	BDL	25	140	42	9	22	1.8	250
9	Khandwa	Bore	21.5355	80.6116	7.35	478	220	25	6	5	0.12	BDL	32	175	42	17	23	2.5	311
10	Paraswada	Bore	21.6284	80.2851	7.45	780	311	75	4	16	0.16	BDL	43	260	80	15	55	1.8	507
11	Kaydi	HP	21.7930	80.0931	6.40	101	31	12	3	2	0.04	BDL	38	30	8	2	8	1.1	66
12	Kabuliwara	HP	21.7205	80.0109	7.74	1647	311	370	20	6	0.40	0.1	22	650	176	51	75	1.6	1071
13	Sonjhara	HP	21.6496	80.0130	7.58	1572	494	240	5	32	0.42	BDL	30	495	170	17	130	1.9	1022
14	Saleteka	HP	21.6268	79.9471	7.47	1997	531	305	6	125	0.33	BDL	28	625	222	17	165	2.4	1298
15	Bonkata	HP	21.6100	79.7591	7.12	1067	250	160	38	43	0.44	BDL	30	365	88	35	72	2	694
16	Paraswadaghat	HP	21.6663	79.8045	7.65	1493	336	250	38	75	0.37	BDL	42	500	166	21	108	4.9	970
17	Serpar	HP	21.7829	79.8973	7.73	1420	750	52	10	4	1.42	BDL	25	280	110	1	195	1.6	923
18	Saongi	HP	21.7856	80.0032	7.92	872	427	32	15	8	1.14	BDL	25	295	60	35	54.9	5	567
19	Nayatola	HP	21.8343	80.0311	8.04	1078	482	87	10	9	0.98	0.1	22	285	52	38	115	4.9	701
20	Pathersahi	HP	21.9746	80.0351	7.43	1074	378	115	12	49	0.66	BDL	26	340	112	15	80	15.1	698
21	Birsola	HP	21.8690	80.1048	7.95	753	305	65	5	27	0.57	BDL	32	250	76	15	52	5.8	489
22	Pipartola	HP	21.8771	80.2884	7.25	239	104	12	6	3	0.16	BDL	25	75	18	7	16	2.6	155
23	Chiklaghodi	Bore	21.9561	80.4019	7.5	315	146	15	5	10	0.2	BDL	36	110	36	5	20	2.1	205
24	Sarnnapur	HP	21.9702	80.4861	7.54	251	85	12	12	17	0.41	BDL	37	85	26	5	12	3.1	163
25	Ramatola	Bore	22.0024	80.5418	7.37	640	317	32	5	4	0.07	BDL	38	240	90	4	35	1.6	416
26	Sakrai Tola	HP	22.1372	80.6506	7.89	272	122	15	6	2	0.3	BDL	39	65	16	6	30	2.2	177
27	Khursipar	HP	22.2017	80.7407	7.28	361	140	15	8	27	0.03	BDL	40	145	42	10	9.4	1.4	235

	Parameters				pН	EC	HCO_3	Cl	\mathbf{SO}_4	NO_3	F	\mathbf{PO}_4	SiO ₂	TH	Ca	Mg	Na	K	TDS
S. No.	Location	Source	Lat.	Long.	at 25°C	μS/cm at 25°C													
28	Gaddi	HP	22.2342	80.7886	7.61	767	146	107	60	55	0.27	BDL	41	295	86	19	39	0.7	499
29	Jobati Tola	Bore	22.2369	80.8726	8.27	731	329	47	10	11	0.27	BDL	42	135	38	10	100	6.1	475
30	Brahman Tola	HP	22.2643	80.7924	7.04	408	67	40	28	70	0.03	BDL	43	145	38	12	25	2.9	265
31	Nabalpur	HP	22.1882	80.7796	7.82	874	293	97	10	50	0.18	BDL	44	320	100	17	46	8.3	568
32	Mohgaon	Bore	22.0575	80.6677	7.05	731	171	87	27	79	0.27	BDL	45	245	62	22	52	2.4	475
33	Palera	HP	22.0530	80.7565	7.54	646	238	50	10	46	0.06	BDL	46	250	74	16	30	2.8	420
34	Mundai	HP	22.0526	80.8295	7.1	768	268	95	5	20	0.06	BDL	47	290	82	21	40	3.5	499
35	Salghat	HP	21.9679	80.7617	7.34	357	122	25	8	31	0.1	BDL	48	115	38	5	25	1.9	232
36	Saletekri	HP	21.7812	80.8089	7.77	362	189	10	5	4	0.05	BDL	49	115	22	15	28	1.9	235
37	Singhodi	HP	22.1188	80.5115	7.26	715	220	115	8	2	0.43	BDL	50	205	64	11	66	5	465
38	Khurmundi	HP	22.1261	80.4753	7.27	763	201	77	20	91	0.07	BDL	51	275	100	6	43	4.3	496
39	Bagholi	HP	22.1399	80.3736	7.25	275	110	22	4	12	0.14	BDL	52	80	24	5	24	2.9	179
40	Bondua	HP	22.1318	80.1273	7.18	1065	207	135	72	104	0.15	BDL	53	270	106	1	110	14	692

ANNEXURE-IV (Ground Water Trend)

BLOCK_NAME	SITE_NAME	Premonsoon_trend (m/yr)_2012-21	Postmonsoon trend (m/year)_2012-21
WARASEONI	Amai	0.211884	-0.020844
LANJI	Baghatola	-0.97854	-0.443808
PARASWADA	Bagholi	0.303216	0.079416
BAIHAR	Baihar(D)	0.030432	-0.171732
BAIHAR	Baihar1	0.035916	-0.105756
BALAGHAT	Balaghat	0.434724	0.05904
BAIHAR	Bhaisanghat	0.179016	-0.0093
KIRNAPUR	Bhanegaon	-0.147552	-0.211968
BIRSA	Birsa	0.079476	-0.08772
KHAIRLANJI	Bonkatta	-0.170124	0.002316
BIRSA	Damoh(S)	0.043332	-0.03252
BIRSA	Damoh2	0.09558	0.00072
KHAIRLANJI	Garraghoda	0.244428	0.088332
BAIHAR	Jawaditula	0.65544	0.162396
LALBARRA	Kanjai	0.201264	0.035052
WARASEONI	Kanki	0.577704	-0.246732
LALBARRA	Katang Tola	0.607032	0.25896
KATANGI	Katangi	-0.062316	0.16386
KATANGI	Katangi-D	-1.675524	-0.242652
KATANGI	Katangi-S	-0.556068	-0.247128
KATANGI	Katedhara	-0.064644	0.075804
KHAIRLANJI	Khairlanji	0.379704	0.178788
PARASWADA	Khurmundi	0.521916	0.099384
KIRNAPUR	Kirnapur	0.35802	-0.060288
WARASEONI	Kochwahi	0.215652	0.057528
BALAGHAT	Lamta(S)	-0.234312	0.306192
BALAGHAT	Lamta1	0.16656	0.19968
BAIHAR	Laugur	0.587496	0.59232
BALAGHAT	Magardarta	0.171888	0.041592
KHAIRLANJI	Miragpur	-0.215604	-0.074208
BAIHAR	Mohagaon	0.093204	9.6 98988
BAIHAR	Mukki	0.021516	-0.05334
WARASEONI	Newargaon	0.584172	0.048948
LANJI	Paldongri	-0.22794	-0.76482
BAIHAR	Parsatola	0.418572	0.012816
KIRNAPUR	Rajegaon	-0.110556	-0.266784
KHAIRLANJI	Rampalli	-0.226068	-0.048336
PARASWADA	Rangpatbaba	0.15138	-0.0171
BALAGHAT	Saleteka New	-0.172668	-0.222756
BIRSA	Saletekhri	0.181608	0.186444
BAIHAR	Samnapur	0.03594	0.022296
BAIHAR	Supkhar	0.452868	-0.104088

ANNEXURE-V (Lithologs)

		Geology
		Clayey soil
		Weathered Mica Schist
		Fractured Mica Schist
25	54.90	Mica Schist
0	1.5	Clayey soil
1.50	20.00	Weathered Mica Schist
20	52	Mica Schist
52.00	83.00	Massive Banded Gniess
0.00	2.50	Clayey soil
2.50	10.00	Weathered Mica Schist
10.00	35.00	Mica Schist
35.00	100.00	Fractured Granite
0.00	1.50	Clayey soil
1.50	10.00	Weathered Mica Schist
10.00	30.00	Mica Schist
0	2.5	Clayey soil
2.5	20.00	Weathered Mica Schist
20	32.00	Mica Schist
32	50.00	Massive Banded Gniess
0.00	0.50	Clayey soil
0.50	25	Weathered Mica Schist
25	54.90	Mica Schist
0	0.50	Clayey soil
0.5	15.40	Weathered Mica Schist
15.4	15.40	Fractured Mica Schist
15.4	23.00	Mica Schist
23	23.00	Weathered Banded Gneiss
23	25.00	Fractured Banded Gneiss
25	54.55	Massive Banded Gniess
54.55	54.55	Fractured Granite 97
54.55	54.55	Massive Granite
0	1.50	Clayey soil
1.5	1.50	Weathered Mica Schist
1.5	1.50	Fractured Mica Schist
1.5	1.50	Mica Schist
1.5	10.00	Weathered Banded Gneiss
10	12.00	Fractured Banded Gneiss
50	50.00	Massive Granite
0	2.50	Clayey soil
2.5	10.00	Weathered Mica Schist
10	30.00	Mica Schist
10	50.00	1 1100 0 011100
30	32.00	Fractured Banded Gneiss
	depth1 0.00 0.50 25 0 0.00 0.50 2.5 0 0.00 0.50 25 0 0.50 25 0 0.5 15.4 15.4 23 23 25 54.55 54.55 54.55 0 1.5 1.	0.00 0.50 0.50 25 25.00 25 25 54.90 0 1.5 1.50 20.00 20 52 52.00 83.00 0.00 2.50 2.50 10.00 10.00 35.00 10.00 10.00 0.00 1.50 1.50 10.00 10.00 30.00 0 2.5 2.5 20.00 32 50.00 0.50 25 25 54.90 0 0.50 0.5 15.40 15.4 15.40 15.4 23.00 23 23.00 23 25.00 25 54.55 54.55 54.55 54.55 54.55 54.55 54.55 54.55 54.55 54.55 54.55 54.55

Bondua	0	4.00	Clayey soil
	4	10.00	Weathered Mica Schist
	10	30.00	Mica Schist
	30	31.00	Fractured Banded Gneiss
	31	60.00	Massive Banded Gniess
malajhkhand	0	3.15	Clayey soil
-	3.15	3.15	Mica Schist
·	3.15	14.60	Weathered Banded Gneiss
malajhkhand	14.6	15.20	Fractured Banded Gneiss
	15.2	20.00	Massive Banded Gniess
malajhkhand	20	30.32	Massive Granite
Mohgaon	0	5.00	Clayey soil
Mohgaon	5	20.00	Weathered Banded Gneiss
Mohgaon	20	22.00	Fractured Banded Gneiss
Mohgaon	22	30.00	Massive Banded Gniess
Mohgaon	30	32.00	Fractured Granite
Mohgaon	32	60.00	Massive Granite
Salghat	0	2.50	Clayey soil
Salghat	2.5	23.00	Weathered Banded Gneiss
Salghat	23	25.00	Fractured Banded Gneiss
Salghat	25	35.00	Massive Banded Gniess
Salghat	35	37.00	Fractured Granite
Salghat	37	60.00	Massive Granite
Katangi	0	2.50	Clayey soil
Katangi	2.5	15.50	Weathered Mica Schist
Katangi	15.5	16.50	Fractured Mica Schist
Katangi	16.5	59.82	Mica Schist
Bonkata	0	1.50	Clayey soil
Bonkata	1.5	5.00	Weathered Mica Schist
Bonkata	5	18.00	Weathered Banded Gneiss
Bonkata	18	19.00	Fractured Banded Gneiss
Bonkata	19	80.08	Massive Banded Gniess
Sonjhara	0	3.50	Clayey soil
Sonjhara	3.5	5.50	Weathered Mica Schist
Sonjhara	5.5	20.00	Weathered Banded Gneiss
Sonjhara	20	22.00	Fractured Banded Gneiss
Sonjhara	22	60.00	Massive Banded Gniess
Saleteka	0	2.50	Clayey soil
Saleteka	2.5	15.00	Weathered Mica Schist
Saleteka	15	15.50	Fractured Mica Schist
Saleteka	15.5	25.00	Mica Schist
Saleteka	25	60.00	Massive Banded Gniess
U	0	3.50	Clayey soil
Paraswadaghat	3.5	4.50	Weathered Mica Schist
Paraswadaghat	4.5	4.50	Fractured Mica Schist
Paraswadaghat	4.5	4.50	Mica Schist
Paraswadaghat	4.5	25.00	Weathered Banded Gneiss
Paraswadaghat	25	27.00	Fractured Banded Gneiss
Paraswadaghat	27	80.08	Massive Banded Gniess
Bhalwa	0	1.50	Clayey soil

Bhalwa	1.5	20.00	Weathered Mica Schist
Bhalwa	20	22.00	Fractured Mica Schist
Bhalwa	22	35.00	Mica Schist
Bhalwa	35	36.00	Fractured Banded Gneiss
Bhalwa	36	80.00	Massive Banded Gniess
Chhotapala	0	2.50	Clayey soil
Chhotapala	2.5	20.00	Weathered Mica Schist
Chhotapala	20	22.00	Fractured Mica Schist
Chhotapala	22	60.00	Mica Schist
Chhotapala	60	80.00	Massive Banded Gniess
Binora	0	2.50	Clayey soil
Binora	2.5	20.00	Weathered Banded Gneiss
Binora	20	22.00	Fractured Banded Gneiss
Binora	20	60.00	Massive Banded Gniess
Nayatola	0	4.50	Clayey soil
Nayatola	4.5	25.00	Weathered Mica Schist
Nayatola	25	26.00	Fractured Mica Schist
Nayatola	26	40.00	Mica Schist
Nayatola	40	41.00	Fractured Banded Gneiss
Nayatola	41	100.00	Massive Banded Gniess
Pathersahi	0	2.50	Clayey soil
Pathersahi	2.5	20.00	Weathered Mica Schist
Pathersahi	20	22.00	Fractured Mica Schist
Pathersahi	38	90.00	Massive Banded Gniess
Birsola	0	4.50	Clayey soil
Birsola	4.5	25.00	Weathered Mica Schist
Birsola	25	50.00	Mica Schist
Birsola	50	110.00	Massive Banded Gniess
Lanji	0	2.50	Clayey soil
Lanji	2.5	10.00	Weathered Banded Gneiss
Lanji	10	50.00	Massive Banded Gniess
Keratola	0	4.50	Clayey soil 99
Keratola	4.5	25.00	Weathered Banded Gneiss
Keratola	25	26.00	Fractured Banded Gneiss
Keratola	26	60.00	Massive Banded Gniess
Singhodi	0	5.00	Clayey soil
Singhodi	5	25.00	Weathered Mica Schist
Singhodi	25	26.00	Fractured Mica Schist
Singhodi	26	50.00	Mica Schist
Singhodi	50	50.00	Weathered Banded Gneiss
Singhodi	50	50.00	Fractured Banded Gneiss
Singhodi	50	50.00	Massive Banded Gniess
Singhodi	50	50.00	Fractured Granite
Singhodi	50	50.00	Massive Granite
	0	5.50	
Bagholi Pagholi	0.5	50.00	Clayey soil Weathered Mica Schist
Bagholi	0.5		
Waraseoni		2.50	Clayey soil
Waraseoni	2.5	30.00	Weathered Mica Schist

20	E0.00	Mica Cabiat		
30	50.00	Mica Scilist		
50	80.00	Massive Banded Gnie	ess	
0	2.50	Clayey soil		
2.5	10.00	Weathered Mica Schi	st	
10	30.00	Mica Schist		
30	31.00	Fractured Banded Gneiss		
31	80.00	Massive Banded Gnie	ess	
0	4.00	Clayey soil		
4 15.00		Weathered Mica Schist		
15	30.00	Mica Schist		
30	31.00	1.00 Fractured Banded Gne		
31	100.00	Massive Banded Gnie	ess	
	0 2.5 10 30 31 0 4 15	50 80.00 0 2.50 2.5 10.00 10 30.00 31 80.00 0 4.00 4 15.00 15 30.00 30 31.00	50 80.00 Massive Banded Gnie 0 2.50 Clayey soil 2.5 10.00 Weathered Mica Schist 10 30.00 Mica Schist 30 31.00 Fractured Banded Gnie 0 4.00 Clayey soil 4 15.00 Weathered Mica Schist 15 30.00 Mica Schist 30 31.00 Fractured Banded Gnie	